
1 | P a g e

Managing Cisco UCS with Ansible
DNW07
Speaker:

David Soper, Technical Marketing Engineer

2 | P a g e

Table of Contents

Learning Objectives .. 2

Overview .. 2

Prerequisites .. 2

Getting Started ... 2

Lab Tasks .. 3

Task 1: Verify Ansible and the UCSM Python SDK are Installed 3
Step 1: Install Ansible... 3
Step 2: Install UCSM Python SDK ... 3

Task 2: Get Example Playbooks .. 3

Task 3: View and Customize Example Playbooks ... 4
Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection Information 4
Step 2: Run a Server Configuration and Deployment Playbook .. 4
Step 3: View Roles for the Server Deployment Playbook .. 5
Step 4: Checking what Ansible will Change ... 6
Step 5: Run the Server Deployment Playbook ... 7
Step 6: View Policy/Profile Roles ... 8

Task 4 (Optional): ucs_managed_objects and User Defined Configuration 9

Learning Objectives

Overview
Cisco Unified Computing System™ (Cisco UCS®) and Cisco HyperFlex® platforms offer an
intelligent level of management that enables IT organizations to analyze, simplify, and
automate their environments.
Within this workshop, you will use Ansible to interact with the UCS API and perform a
variety of resource management tasks.

Prerequisites
While not required prior to starting this lab, familiarity with the Linux/MacOS command line
and use of a text editor such as Vi will be helpful. Working knowledge of Ansible will also be
helpful, but again is not required.

Getting Started
This lab will interact with the UCS API from a Linux/MacOS workstation.

3 | P a g e

Lab Tasks
The following tasks will configure Ansible on your system, retrieve a set of example Ansible
playbooks, and customize the playbooks for use in this lab.

Task 1: Verify Ansible and the UCSM Python SDK are Installed

Open a terminal on your workstation (you can spotlight search for “terminal” if you

are on MacOS), and type “ansible --version”. You should see

2.9 or later:
$ ansible --version

ansible 2.9.9

 config file = None

 configured module search path =

['/Users/dsoper/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

 ansible python module location =

/usr/local/lib/python3.7/site-packages/ansible

 executable location = /usr/local/bin/ansible

 python version = 3.7.6 (default, Dec 30 2019, 19:38:36)

[Clang 10.0.0 (clang-1000.11.45.5)]

If Ansible is not installed or reports an older version, you can type “pip install -U ansible” to
install/update.

You’ll also need to ensure that the UCS Manager Python SDK is installed – this can also be
done with pip:

$ pip install ucsmsdk

Task 2: Ansible Collection for UCS and Example Playbooks

Ansible is moving most modules out of Ansible core and into Collections. Cisco Collections
are available in the Cisco namespace of Ansible Galaxy at https://galaxy.ansible.com/cisco.
Collections provide a way to develop and distribute modules without dependencies and
maintenance within Ansible core.

The ansible-galaxy command provides an interface to Ansible Galaxy and the ability to
install and manage collections. Install instructions and additional details for the Cisco UCS
Collection are at https://galaxy.ansible.com/cisco/ucs. We will now install the collection
and use some of the provided example playbooks.

In the terminal window, install cisco.ucs using ansible-galaxy:

$ ansible-galaxy collection install cisco.ucs

Ansible-galaxy should display installation status and the directory location of the
collection:

Process install dependency map

https://galaxy.ansible.com/cisco
https://galaxy.ansible.com/cisco/ucs

4 | P a g e

Starting collection install process

Installing 'cisco.ucs:1.1.0' to

'/Users/dsoper/.ansible/collections/ansible_collections/cisco/u

cs'

Change directory to the collection install location and view the directory’s contents:

$ cd

/Users/dsoper/.ansible/collections/ansible_collections/cisco/uc

s

$ ls

Development.md MANIFEST.json playbooks tests

FILES.json README.md plugins

UCS modules, module_utils, and documentation are in the plugins directory. Several example
playbooks are available in the playbooks directory. Change to the playbooks directory and
view the example playbooks:

$ cd playbooks/

$ ls

example_playbook.yml

inventory

roles

sandbox_inventory

server_deploy.yml

...

Task 3: View and Customize Example Playbooks

There are many ways to organize data and connection information for resources you want
to manage with Ansible. In this lab, we’ll use a basic inventory file with UCS login
information and playbooks with default values used in configuration (you can change values
used with Ansible variable substitution).

Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection
Information

Ansible uses the UCS API for UCS Manager connections and management, and the API
uses the same HTTPS connections you use with a web browser to access the UCS
Manager web UI. The API is the basis for everything in UCS (including CLI commands that
you might use via SSH), and Ansible API access is driven through the UCS Manager
Python SDK.

To tell Ansible how to connect to UCS’s API, we’ll specify our ip/hostname in the inventory
file along with our credentials (username and password). Ansible has several options such
as vault for securely storing system credentials, but in this lab it’s in the inventory for
simplicity.

[ucs]

13.58.22.56

[ucs:vars]

username=admin

password=password

5 | P a g e

Edit the ip address (which is what Ansible will use for a hostname) if needed for the UCS
Manager IP you want to configure. In this basic inventory, we have a ‘ucs’ host group where
we could add other hosts as needed and they’ll all share variables setup in the [ucs:vars]
block.

Step 2: Run a Server Configuration and Deployment Playbook

An example server configuration and deployment playbook named server_deploy.yml is in
the playbooks directory. View this file:

Configure UCS, Associate Service Profiles, and Install OS

...

- hosts: "{{ group | default('ucs') }}"
connection: local

gather_facts: false

vars:

The UCS domain hostname can be set in the inventory or on the

command line as needed

hostname: "{{ inventory_hostname }}"

6 | P a g e

Names for Service Profiles, Policies, and number of Profiles

template_name: auto-template

vmedia_policy: cdd-nfs

profile_name: auto-profile

num_profiles: 2

tasks:

- block:

Configure default pools and other settings

...

Note that the “vars” section above contains Service Profile Template, Virtual Media Policy,
and other variables that you can change if you’d like. Variables would usually come from
Ansible group_vars and host_vars directories (or the inventory), but we’ve placed them in
the playbook for simplicity (check out Ansible’s excellent documentation pages if you need
more information on how to organize your inventory and variables that Ansible will use in
configuration).

Recommended Steps to Check YAML Syntax

Ansible doesn’t always tell you right away what’s wrong with your YAML, and YAML syntax
can be challenging to debug. U tilities such as yamllint can help identify issues prior to
running playbooks:

$ yamllint server_deploy.yml

(“pip install yamllint” if yamllint is not already installed on the workstation)

You can ignore “line too long” errors/warnings, and note that these can be turned off by
creating and editing a ~/.config/yamllint/config file:

yamllint config file

extends: default

rules:

140 chars should be enough, but don't fail if a line is

longer

line-length:

max: 140

level: warning

Step 3: View Roles for the Server Deployment Playbook

The server_deploy.yml playbook has 1 play and several tasks that configure all of the
policies and profiles needed to deploy service profiles from templates (in this case the
default will be 2 profiles deployed from a single template).

The playbook uses roles defined in the “roles” subdirectory of the repo to configure each
specific policy and profile. Here’s what the tasks look like:

7 | P a g e

tasks:

- block:

Configure default pools and other settings

- import_role:
name: servers/defaults

tags: defaults

Configure Service Profile Template with default settings

- import_role:
name: servers/service_profile_templates

tags: templates

Create Service Profiles from template and associate

- import_role:
name: servers/service_profiles

tags: profiles

Use the localhost's environment and Python

delegate_to: localhost

A few things to note in the example playbook:

• We use “block” to wrap related tasks so there are common directives for all the
enclosed tasks. “delegate_to: localhost” is used to run with the same python
interpreter used to install Ansible (what “which python” shows for the current user).

• Each import_role line will run tasks in the roles subdirectory. For example, the
servers/defaults will run tasks in roles/servers/defaults/tasks/main.yml. Vars in the
playbook (or defined anywhere else that Ansible looks them up) will be passed to the
roles tasks.

• Tags can be used to run only a specific part of the playbook if needed.

Step 4: Checking what Ansible will Change

The UCS modules all support Ansible’s check mode. Check mode allows you to see what
Ansible would change without actually making any changes to UCSM:

$ ansible-playbook -i inventory server_deploy.yml --check

PLAY [ucs]

**

TASK [servers/defaults : Configure default IP Pool]

You can increase Ansible’s verbosity with the -v option (and multiple “v”s, like -vvv) to see
exactly what Ansible will do:

$ ansible-playbook -i inventory server_deploy.yml --check -vvv

ansible-playbook 2.9.9

config file = None

configured module search path =

['/Users/dsoper/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

8 | P a g e

ansible python module location =

/usr/local/lib/python3.6/site-packages/ansible

executable location = /usr/local/bin/ansible-playbook

python version = 3.6.5 (default, Apr 20 2018, 18:22:17) [GCC

4.2.1 …

<snip>

<localhost> EXEC /bin/sh -c

'/usr/local/opt/python/bin/python3.6

/Users/dsoper/.ansible/tmp/ansible-tmp-1556645678.4761322-

240916740175025/AnsiballZ_ucs_ip_pool.py && sleep 0'

<localhost> EXEC /bin/sh -c 'rm -f -r

/Users/dsoper/.ansible/tmp/ansible-tmp-1556645678.4761322-

240916740175025/ > /dev/null 2>&1 && sleep 0'

ok: [172.16.143.175 -> localhost] => {

"changed": false,

"invocation": {

"module_args": {

"default_gw": "0.0.0.0",

"descr": "",

"first_addr": null,

"hostname": "172.16.143.175",

"ipv4_blocks": [

{

"default_gw": "198.18.0.1",

The “module_args” just above are what’s being passed to the ucs_ip_pool module.

Step 5: Run the Server Deployment Playbook

You can run the server_deploy.yml playbook, and when run without the --check option you
should see your UCS Manager domain configured. You should also be able to re-run and see
‘ok’ for all the tasks indicating that Ansible hasn’t made any changes.:

$ ansible-playbook -i inventory server_deploy.yml

PLAY [ucs]

**

TASK [servers/defaults : Configure default IP Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default MAC Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default UUID Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default Virtual Media

Policy] ***************

9 | P a g e

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default Boot Order Policy]

ok: [172.16.143.175 -> localhost]

There’s a lot more you can do with Ansible, so feel free to try other settings or operations.
Since this lab may be using a shared environment, the default playbook may not make any
changes. You can change profile_name or other variables to see how Ansible manages
changes.

Step 6: View Policy/Profile Roles

The IP Pool and other configuration of UCS Manager is performed in tasks within the roles
subdirectory using the ucs_ip_pool and other UCS Ansible module. Here’s the IP pool
configuration portion of the defaults role defined at roles/servers/defaults/tasks/main.yml:

cisco.ucs.ucs_ip_pool:

<<: *login_info

name: ext-mgmt

ipv4_blocks:

- first_addr: 198.18.0.20

last_addr: 198.18.0.40

subnet_mask: 255.255.255.0

default_gw: 198.18.0.1

tags: ip_pool

ansible-doc cisco.ucs.ucs_ip_pool will tell you more
about how to use the module and what’s supported:

$ ansible-doc cisco.ucs.ucs_ip_pool

> UCS_IP_POOL

(/Users/dsoper/.ansible/collections/ansible_collections/cisco/ucs

/plugins/modules/ucs_ip

 Configures IP address pools and blocks of IP addresses on

Cisco UCS Manager.

 * This module is maintained by The Ansible Community

OPTIONS (= is mandatory):

- description

 The user-defined description of the IP address pool.

10 | P a g
e

 Enter up to 256 characters.

 You can use any characters or spaces except the

following:

 ` (accent mark), (backslash), ^ (carat), " (double

quote), = (equal sign),

 > (greater than), < (less than), or ' (single quote).

 (Aliases: descr)[Default: (null)]

= hostname

 IP address or hostname of Cisco UCS Manager.

 Modules can be used with the UCS Platform Emulator

https://cs.co/ucspe

 type: str

- ip_blocks

 List of IPv4 blocks used by the IP Pool.

 [Default: (null)]

 suboptions:

 default_gw:

 default: 0.0.0.0

Task 4 (Optional): ucs_managed_objects and User Defined Configuration

From the previous task, when you look at boot order or server pool setup, you’ll see use of a
“general purpose” Ansible module – ucs_managed_objects. ucs_managed_objects does not
abstract away API details like some of the ip_pool/mac_pool/etc. modules do, but it does
allow for Ansible config of any UCS Managed Object. Also, the module still supports check
mode and is idempotent (you can run repeatedly and still get the same result).

ucs_managed_objects directly imports Python modules as needed to carry out
configuration. Unsure what is needed to create Python definitions in Ansible – checkout the
Python DevNet or other Python SDK programming labs in DevNet to learn more about the
Python SDK’s structure and how to do code gen in Python. Once you have Python code
ready, you can just put the Python module names and property values into Ansible and
Ansible will handle the rest (including only making changes if needed based on the supplied
property values):

- name: "Configure default Boot Order Policy"

 cisco.ucs.ucs_managed_objects:

 <<: *login_info

 objects:

 - module: ucsmsdk.mometa.lsboot.LsbootPolicy

 class: LsbootPolicy

 properties:

 parent_mo_or_dn: org-root

 boot_mode: legacy

 enforce_vnic_name: 'yes'

 name: vmedia-local

 reboot_on_update: 'no'

 children:

 - module:

ucsmsdk.mometa.lsboot.LsbootVirtualMedia

 class: LsbootVirtualMedia

11 | P a g
e

Congratulations on completing the UCS and Ansible DevNet workshop!

	Prerequisites
	Getting Started
	Lab Tasks
	Task 1: Verify Ansible and the UCSM Python SDK are Installed
	Task 2: Ansible Collection for UCS and Example Playbooks
	Task 3: View and Customize Example Playbooks
	Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection Information
	Step 2: Run a Server Configuration and Deployment Playbook
	Step 3: View Roles for the Server Deployment Playbook
	Step 4: Checking what Ansible will Change
	Step 5: Run the Server Deployment Playbook
	Step 6: View Policy/Profile Roles

	Task 4 (Optional): ucs_managed_objects and User Defined Configuration

