
    2VhB                        d dl mZ d dl mZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZ dZed	z   Zed
z   Zedz   Zedz   Zedz   Zedz   Zd Zd Zd Z	 	 	 	 	 	 	 	 d%dZ eddg      	 	 	 	 	 	 	 	 d&d       Z eddg      	 	 	 	 	 	 	 	 d'd       Z eddg      	 	 	 	 	 	 	 	 d(d       Z ed      d)d       Z ed      d*d        Zej:                  j=                  d!ej>                  ej@                  "      e_!        ej8                  jB                  e_!        d#Z" e#ed$ejB                  e"z           e#ed$ejB                  e"z           e#ed$ejB                  e"z          y)+    )backend)layers)keras_export)imagenet_utils)
Functional)operation_utils)
file_utilszFhttps://storage.googleapis.com/tensorflow/keras-applications/densenet/1densenet121_weights_tf_dim_ordering_tf_kernels.h57densenet121_weights_tf_dim_ordering_tf_kernels_notop.h51densenet169_weights_tf_dim_ordering_tf_kernels.h57densenet169_weights_tf_dim_ordering_tf_kernels_notop.h51densenet201_weights_tf_dim_ordering_tf_kernels.h57densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5c           
      f    t        |      D ]"  }t        | d|dz   t        |dz         z         } $ | S )zA dense block.

    Args:
        x: input tensor.
        blocks: integer, the number of building blocks.
        name: string, block label.

    Returns:
        Output tensor for the block.
        _block   name)range
conv_blockstr)xblocksr   is       O/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/applications/densenet.pydense_blockr   #   s=     6] Aq"4(?SQZ#?@AH    c                 v   t        j                         dk(  rdnd} t        j                  |d|dz         |       }  t        j                  d|dz   	      |       }  t        j
                  t        | j                  |   |z        dd
|dz         |       }  t        j                  dd|dz         |       } | S )zA transition block.

    Args:
        x: input tensor.
        reduction: float, compression rate at transition layers.
        name: string, block label.

    Returns:
        Output tensor for the block.
    channels_last   r   >_bnaxisepsilonr   relu_relur   F_convuse_biasr      _poolstridesr   )	r   image_data_formatr   BatchNormalization
ActivationConv2DintshapeAveragePooling2D)r   	reductionr   bn_axiss       r   transition_blockr9   3   s     ,,./AaqG	!!hTE\			A 	7&tg~6q9A	AGGGy()	G^		
 		A 	C14'>B1EAHr   c           	         t        j                         dk(  rdnd} t        j                  |d|dz         |       } t        j                  d|dz   	      |      } t        j
                  d
|z  dd|dz         |      } t        j                  |d|dz         |      } t        j                  d|dz   	      |      } t        j
                  |ddd|dz         |      } t        j                  ||dz         | |g      } | S )zA building block for a dense block.

    Args:
        x: input tensor.
        growth_rate: float, growth rate at dense layers.
        name: string, block label.

    Returns:
        Output tensor for the block.
    r    r!   r   r"   _0_bnr$   r'   _0_relur      F_1_convr*   _1_bn_1_relusame_2_conv)paddingr+   r   _concat)r%   r   )r   r0   r   r1   r2   r3   Concatenate)r   growth_rater   r8   x1s        r   r   r   M   s)    ,,./AaqG
	"	"hTG^

	B 
:		6y(8	9"	=B
	KU	1A


B
	"	"hTG^


B 
:		6y(8	9"	=B
QTI=M


B 	@dY.>?BHAHr   Nc	                 T   t        j                         dk(  rt        d      |dv s t        j                  |      st        d      |dk(  r|r|dk7  rt        d      t        j                  |dd	t        j                         ||
      }|t        j                  |      }	n/t        j                  |      st        j                  ||      }	n|}	t        j                         dk(  rdnd}
 t        j                  d      |	      } t        j                  ddddd      |      } t        j                  |
dd      |      } t        j                  dd      |      } t        j                  d      |      } t        j                  ddd       |      }t        || d!   d"      }t!        |d#d$      }t        || d   d%      }t!        |d#d&      }t        || d   d'      }t!        |d#d(      }t        || d   d)      } t        j                  |
dd*      |      } t        j                  dd      |      }|rQ t        j"                  d+      |      }t        j$                  ||        t        j&                  ||d,-      |      }nC|d.k(  r t        j"                  d+      |      }n!|d/k(  r t        j(                  d0      |      }|t+        j,                  |      }n|	}t/        |||      }|dk(  r	|rz| g d1k(  rt        j0                  d2t2        d3d45      }n| g d6k(  rt        j0                  d7t4        d3d85      }n| g d9k(  rt        j0                  d:t6        d3d;5      }nt        d<      | g d1k(  rt        j0                  d=t8        d3d>5      }nU| g d6k(  rt        j0                  d?t:        d3d@5      }n0| g d9k(  rt        j0                  dAt<        d3dB5      }nt        d<      |j?                  |       |S ||j?                  |       |S )CaO  Instantiates the DenseNet architecture.

    Reference:
    - [Densely Connected Convolutional Networks](
        https://arxiv.org/abs/1608.06993) (CVPR 2017)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For DenseNet, call `keras.applications.densenet.preprocess_input`
    on your inputs before passing them to the model.
    `densenet.preprocess_input` will scale pixels between 0 and 1 and then
    will normalize each channel with respect to the ImageNet
    dataset statistics.

    Args:
        blocks: numbers of building blocks for the four dense layers.
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
            `"imagenet"` (pre-training on ImageNet),
            or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)`
            (with `'channels_last'` data format)
            or `(3, 224, 224)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified. Defaults to `1000`.
        classifier_activation: A `str` or callable.
            The activation function to use
            on the "top" layer. Ignored unless `include_top=True`. Set
            `classifier_activation=None` to return the logits of the "top"
            layer. When loading pretrained weights, `classifier_activation`
            can only be `None` or `"softmax"`.
        name: The name of the model (string).

    Returns:
        A model instance.
    channels_firstzDenseNet does not support the `channels_first` image data format. Switch to `channels_last` by editing your local config file at ~/.keras/keras.json>   NimagenetzThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded.rJ     zWIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000   r   )default_sizemin_sizedata_formatrequire_flattenweights)r5   )tensorr5   r    r!   r   )r!   r!   rS   )rC   @      r,   F
conv1_conv)r/   r+   r   r"   conv1_bnr$   r'   
conv1_relur   )r   r   rY   pool1r.   r   conv2g      ?pool2conv3pool3conv4pool4conv5bnavg_poolpredictions)
activationr   avgmaxmax_pool            r
   models 9d60b8095a5708f2dcce2bca79d332c7)cache_subdir	file_hashrj   rk   r   r   r    d699b8f76981ab1b30698df4c175e90brj   rk   0   r   r    1ceb130c1ea1b78c3bf6114dbdfd8807zweights_path undefinedr    30ee3e1110167f948a6b9946edeeb738r    b8c4d4c20dd625c148057b9ff1c1176br    c13680b51ded0fb44dff2d8f86ac8bb1) r   r0   
ValueErrorr	   existsr   obtain_input_shaper   Inputis_keras_tensorZeroPadding2Dr3   r1   r2   MaxPooling2Dr   r9   GlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   get_fileDENSENET121_WEIGHT_PATHDENSENET169_WEIGHT_PATHDENSENET201_WEIGHT_PATHDENSENET121_WEIGHT_PATH_NO_TOPDENSENET169_WEIGHT_PATH_NO_TOPDENSENET201_WEIGHT_PATH_NO_TOPload_weights)r   include_toprQ   input_tensorinput_shapepoolingclassesclassifier_activationr   	img_inputr8   r   inputsmodelweights_paths                  r   DenseNetr   k   s3   \   "&661
 	

 ))Z->->w-G<
 	
 *D1
 	
 !33--/#K LL{3	&&|4LLI$I,,./AaqG6%56yAAJb!Q\J1MA	!!hZ			A 	5&|4Q7A6%56q9A7Aqw7:AAvayw/ACg.AAvayw/ACg.AAvayw/ACg.AAvayw/AL!!wtLQOA.&v.q1A:F))z:1=**+@'J
FLL 5M

 e>--:>qAA:))z:1=A  22<@ vqt,E *()22G+!)@	  ?*)22G+!)@	  ?*)22G+!)@	  !!9::()22M2!)@	  ?*)22M2!)@	  ?*)22M2!)@	  !!9::<( L 
	7#Lr   z'keras.applications.densenet.DenseNet121zkeras.applications.DenseNet121c                 .    t        g d| |||||||	      S )z*Instantiates the Densenet121 architecture.ri   r   r   r   rQ   r   r   r   r   r   r   s           r   DenseNet121r   E  ,    " 
 
r   z'keras.applications.densenet.DenseNet169zkeras.applications.DenseNet169c                 .    t        g d| |||||||	      S )z*Instantiates the Densenet169 architecture.rr   r   r   r   s           r   DenseNet169r   c  r   r   z'keras.applications.densenet.DenseNet201zkeras.applications.DenseNet201c                 .    t        g d| |||||||	      S )z*Instantiates the Densenet201 architecture.rt   r   r   r   s           r   DenseNet201r     r   r   z,keras.applications.densenet.preprocess_inputc                 2    t        j                  | |d      S )Ntorch)rO   mode)r   preprocess_input)r   rO   s     r   r   r     s    **	{ r   z.keras.applications.densenet.decode_predictionsc                 0    t        j                  | |      S )N)top)r   decode_predictions)predsr   s     r   r   r     s    ,,U<<r    )r   reterroral	  

Reference:
- [Densely Connected Convolutional Networks](
    https://arxiv.org/abs/1608.06993) (CVPR 2017)

Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.

Note: each Keras Application expects a specific kind of input preprocessing.
For DenseNet, call `keras.applications.densenet.preprocess_input`
on your inputs before passing them to the model.

Args:
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
        `"imagenet"` (pre-training on ImageNet),
        or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(224, 224, 3)` (with `'channels_last'` data format)
        or `(3, 224, 224)` (with `'channels_first'` data format).
        It should have exactly 3 inputs channels,
        and width and height should be no smaller than 32.
        E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
    classes: optional number of classes to classify images
        into, only to be specified if `include_top` is `True`, and
        if no `weights` argument is specified. Defaults to 1000.
    classifier_activation: A `str` or callable.
        The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits
        of the "top" layer. When loading pretrained weights,
        `classifier_activation` can only be `None` or `"softmax"`.
    name: The name of the model (string).

Returns:
    A Keras model instance.
__doc__)TrJ   NNNrK   softmaxdensenet)TrJ   NNNrK   r   densenet121)TrJ   NNNrK   r   densenet169)TrJ   NNNrK   r   densenet201)N)   )$	keras.srcr   r   keras.src.api_exportr   keras.src.applicationsr   keras.src.modelsr   keras.src.opsr   keras.src.utilsr	   BASE_WEIGHTS_PATHr   r   r   r   r   r   r   r9   r   r   r   r   r   r   r   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_TORCHPREPROCESS_INPUT_ERROR_DOCr   DOCsetattr r   r   <module>r      sK     - 1 ' ) & M  KK  ?@ 
 KK  ?@ 
 KK  ?@  4@ #	Wt 1( #	0 1( #	0 1( #	0 <= > >?= @= *>>EE	55

3
3 F   
 ,>>FF  6p Y 3 3c 9 : Y 3 3c 9 : Y 3 3c 9 :r   