
    2Vh#                     r   d dl mZ d dl mZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZ dZd	Z ed
dg      	 	 	 	 	 	 	 	 dd       Z ed      dd       Z ed      dd       Zej$                  j'                  dej(                  ej*                        e_        ej"                  j,                  e_        y)    )backend)layers)keras_export)imagenet_utils)
Functional)operation_utils)
file_utilsznhttps://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5zthttps://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5zkeras.applications.vgg16.VGG16zkeras.applications.VGG16Nc                    |dv s#t        j                  |      st        d|       |dk(  r| r|dk7  rt        d|       t        j                  |ddt        j                         | |      }|t        j                  |	      }n/t        j                  |      st        j                  ||
      }n|} t        j                  ddddd      |      }	 t        j                  ddddd      |	      }	 t        j                  ddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddd      |	      }	 t        j                  ddddd      |	      }	 t        j                  ddddd       |	      }	 t        j                  ddddd!      |	      }	 t        j                  ddd"      |	      }	 t        j                  ddddd#      |	      }	 t        j                  ddddd$      |	      }	 t        j                  ddddd%      |	      }	 t        j                  ddd&      |	      }	| r t        j                  d'(      |	      }	 t        j                  d)dd*+      |	      }	 t        j                  d)dd,+      |	      }	t        j                  ||        t        j                  ||d-+      |	      }	n?|d.k(  r t        j                         |	      }	n|d/k(  r t        j                          |	      }	|t#        j$                  |      }
n|}
t'        |
|	|(      }|dk(  rP| rt        j(                  d0t*        d1d23      }nt        j(                  d4t,        d1d53      }|j/                  |       |S ||j/                  |       |S )6a  Instantiates the VGG16 model.

    Reference:
    - [Very Deep Convolutional Networks for Large-Scale Image Recognition](
    https://arxiv.org/abs/1409.1556) (ICLR 2015)

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    The default input size for this model is 224x224.

    Note: each Keras Application expects a specific kind of input preprocessing.
    For VGG16, call `keras.applications.vgg16.preprocess_input` on your
    inputs before passing them to the model.
    `vgg16.preprocess_input` will convert the input images from RGB to BGR,
    then will zero-center each color channel with respect to the ImageNet
    dataset, without scaling.

    Args:
        include_top: whether to include the 3 fully-connected
            layers at the top of the network.
        weights: one of `None` (random initialization),
            `"imagenet"` (pre-training on ImageNet),
            or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(224, 224, 3)`
            (with `channels_last` data format) or
            `(3, 224, 224)` (with `"channels_first"` data format).
            It should have exactly 3 input channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
        classifier_activation: A `str` or callable. The activation function to
            use on the "top" layer. Ignored unless `include_top=True`. Set
            `classifier_activation=None` to return the logits of the "top"
            layer.  When loading pretrained weights, `classifier_activation`
            can only be `None` or `"softmax"`.
        name: The name of the model (string).

    Returns:
        A `Model` instance.
    >   NimagenetzThe `weights` argument should be either `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.  Received: weights=r     zcIf using `weights='imagenet'` with `include_top=True`, `classes` should be 1000.  Received classes=       )default_sizemin_sizedata_formatrequire_flattenweights)shape)tensorr   @   )   r   relusameblock1_conv1)
activationpaddingnameblock1_conv2)   r   block1_pool)stridesr      block2_conv1block2_conv2block2_pool   block3_conv1block3_conv2block3_conv3block3_pooli   block4_conv1block4_conv2block4_conv3block4_poolblock5_conv1block5_conv2block5_conv3block5_poolflatten)r   i   fc1)r   r   fc2predictionsavgmaxz+vgg16_weights_tf_dim_ordering_tf_kernels.h5models 64373286793e3c8b2b4e3219cbf3544b)cache_subdir	file_hashz1vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 6d6bbae143d832006294945121d1f1fc)r	   exists
ValueErrorr   obtain_input_shaper   image_data_formatr   Inputis_keras_tensorConv2DMaxPooling2DFlattenDensevalidate_activationGlobalAveragePooling2DGlobalMaxPooling2Dr   get_source_inputsr   get_fileWEIGHTS_PATHWEIGHTS_PATH_NO_TOPload_weights)include_topr   input_tensorinput_shapepoolingclassesclassifier_activationr   	img_inputxinputsmodelweights_paths                L/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/applications/vgg16.pyVGG16r\      s   V ))Z->->w-G i	!
 	
 *D  'y*
 	
 !33--/#K LL{3	&&|4LLI$I	
FvvN		A	
FvvN			A 	HFFGJA	V^			A	V^			A 	HFFGJA	V^			A	V^			A	V^			A 	HFFGJA	V^			A	V^			A	V^			A 	HFFGJA	V^			A	V^			A	V^			A 	HFFGJA*FNN	*1-=FLL&u=a@=FLL&u=a@**+@'J
FLL 5M

 e/--/2A+))+A.A  22<@ vqt,E *%..=%<	L &..C#%<	L 	<( L 
	7#L    z)keras.applications.vgg16.preprocess_inputc                 2    t        j                  | |d      S )Ncaffe)r   mode)r   preprocess_input)rW   r   s     r[   ra   ra      s    **	{ r]   z+keras.applications.vgg16.decode_predictionsc                 0    t        j                  | |      S )N)top)r   decode_predictions)predsrc   s     r[   rd   rd      s    ,,U<<r]    )r`   reterror)Tr   NNNr   softmaxvgg16)N)   )	keras.srcr   r   keras.src.api_exportr   keras.src.applicationsr   keras.src.modelsr   keras.src.opsr   keras.src.utilsr	   rM   rN   r\   ra   rd   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_CAFFEPREPROCESS_INPUT_ERROR_DOC__doc__ r]   r[   <module>rx      s      - 1 ' ) &8 
8  /1KLM#	O NOd 9: ; ;<= == *>>EE	55

3
3 F   
 ,>>FF  r]   