
    2Vhq                     T    d Z ddlZddlZddlZddlmZ ddlmZ  ed      d        Z	y)zFashion-MNIST dataset.    N)keras_export)get_filez&keras.datasets.fashion_mnist.load_datac                  *   t         j                  j                  dd      } d}g d}g }|D ]"  }|j                  t	        |||z   |              $ t        j                  |d   d      5 }t        j                  |j                         t        j                  d	      }d
d
d
       t        j                  |d   d      5 }t        j                  |j                         t        j                  d	      j                  t              dd      }d
d
d
       t        j                  |d   d      5 }t        j                  |j                         t        j                  d	      }	d
d
d
       t        j                  |d   d      5 }t        j                  |j                         t        j                  d	      j                  t        	      dd      }
d
d
d
       f
	ffS # 1 sw Y   HxY w# 1 sw Y   xY w# 1 sw Y   xY w# 1 sw Y   6xY w)ak  Loads the Fashion-MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of 10 fashion categories,
    along with a test set of 10,000 images. This dataset can be used as
    a drop-in replacement for MNIST.

    The classes are:

    | Label | Description |
    |:-----:|-------------|
    |   0   | T-shirt/top |
    |   1   | Trouser     |
    |   2   | Pullover    |
    |   3   | Dress       |
    |   4   | Coat        |
    |   5   | Sandal      |
    |   6   | Shirt       |
    |   7   | Sneaker     |
    |   8   | Bag         |
    |   9   | Ankle boot  |

    Returns:

    Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **`x_train`**: `uint8` NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data.

    **`y_train`**: `uint8` NumPy array of labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **`x_test`**: `uint8` NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data.

    **`y_test`**: `uint8` NumPy array of labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:

    The copyright for Fashion-MNIST is held by Zalando SE.
    Fashion-MNIST is licensed under the [MIT license](
        https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE).
    datasetszfashion-mnistz<https://storage.googleapis.com/tensorflow/tf-keras-datasets/)ztrain-labels-idx1-ubyte.gzztrain-images-idx3-ubyte.gzzt10k-labels-idx1-ubyte.gzzt10k-images-idx3-ubyte.gz)origincache_subdirr   rb   )offsetN               )ospathjoinappendr   gzipopennp
frombufferreaduint8reshapelen)dirnamebasefilespathsfnamelbpathy_trainimgpathx_trainy_testx_tests              P/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/datasets/fashion_mnist.py	load_datar)      s   n ggll:7GIDE E QXeD5LwOPQ 
58T	" Cf--rxxBC 
58T	" 
g--DLLL"b


 
58T	" Bfv{{}bhhqAB 
58T	" 
gw||~rxxCKKKR


 W///!C C
 

B B
 
s2   )5G$?AG1/5G=AH	$G.1G:=H	H)
__doc__r   r   numpyr   keras.src.api_exportr   keras.src.utils.file_utilsr   r)        r(   <module>r0      s3      	  - / 67S0 8S0r/   