Ë
    2ÆVhY	  ã                   óF   — d Z ddlZddlmZ ddlmZ  ed«      dd„«       Zy)z!MNIST handwritten digits dataset.é    N)Úkeras_export)Úget_filezkeras.datasets.mnist.load_datac                 óº   — d}t        | |dz   d¬«      } t        j                  | d¬«      5 }|d   |d   }}|d	   |d
   }}||f||ffcddd«       S # 1 sw Y   yxY w)aY  Loads the MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
    along with a test set of 10,000 images.
    More info can be found at the
    [MNIST homepage](http://yann.lecun.com/exdb/mnist/).

    Args:
        path: path where to cache the dataset locally
            (relative to `~/.keras/datasets`).

    Returns:
        Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **`x_train`**: `uint8` NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data. Pixel values range
      from 0 to 255.

    **`y_train`**: `uint8` NumPy array of digit labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **`x_test`**: `uint8` NumPy array of grayscale image data with shapes
      `(10000, 28, 28)`, containing the test data. Pixel values range
      from 0 to 255.

    **`y_test`**: `uint8` NumPy array of digit labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:

    Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset,
    which is a derivative work from original NIST datasets.
    MNIST dataset is made available under the terms of the
    [Creative Commons Attribution-Share Alike 3.0 license.](
        https://creativecommons.org/licenses/by-sa/3.0/)
    z<https://storage.googleapis.com/tensorflow/tf-keras-datasets/ú	mnist.npzÚ@731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1)ÚfnameÚoriginÚ	file_hashT)Úallow_pickleÚx_trainÚy_trainÚx_testÚy_testN)r   ÚnpÚload)ÚpathÚorigin_folderÚfr   r   r   r   s          úH/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/datasets/mnist.pyÚ	load_datar   	   sƒ   € ðb 	Gð ô ØØ˜{Ñ*àNô	€Dô 
‰ DÔ	)ð 4¨QØ˜Y™<¨¨9©ˆØ˜8™ a¨¡kˆà˜Ð! F¨FÐ#3Ð3÷	4÷ 4ò 4ús   «AÁA)r   )Ú__doc__Únumpyr   Úkeras.src.api_exportr   Úkeras.src.utils.file_utilsr   r   © ó    r   ú<module>r      s+   ðÙ 'ã å -Ý /ñ Ð.Ó/ò=4ó 0ñ=4r   