
    2Vh                     L    d dl mZ d dlmZ  eddg       G d de             Zy)    )keras_export)BasePoolingzkeras.layers.AveragePooling3Dzkeras.layers.AvgPool3Dc                   ,     e Zd ZdZ	 	 	 	 d fd	Z xZS )AveragePooling3Da
  Average pooling operation for 3D data (spatial or spatio-temporal).

    Downsamples the input along its spatial dimensions (depth, height, and
    width) by taking the average value over an input window (of size defined by
    `pool_size`) for each channel of the input. The window is shifted by
    `strides` along each dimension.

    Args:
        pool_size: int or tuple of 3 integers, factors by which to downscale
            (dim1, dim2, dim3). If only one integer is specified, the same
            window length will be used for all dimensions.
        strides: int or tuple of 3 integers, or None. Strides values. If None,
            it will default to `pool_size`. If only one int is specified, the
            same stride size will be used for all dimensions.
        padding: string, either `"valid"` or `"same"` (case-insensitive).
            `"valid"` means no padding. `"same"` results in padding evenly to
            the left/right or up/down of the input such that output has the same
            height/width dimension as the input.
        data_format: string, either `"channels_last"` or `"channels_first"`.
            The ordering of the dimensions in the inputs. `"channels_last"`
            corresponds to inputs with shape
            `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while
            `"channels_first"` corresponds to inputs with shape
            `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
            It defaults to the `image_data_format` value found in your Keras
            config file at `~/.keras/keras.json`. If you never set it, then it
            will be `"channels_last"`.

    Input shape:

    - If `data_format="channels_last"`:
        5D tensor with shape:
        `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
    - If `data_format="channels_first"`:
        5D tensor with shape:
        `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`

    Output shape:

    - If `data_format="channels_last"`:
        5D tensor with shape:
        `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)`
    - If `data_format="channels_first"`:
        5D tensor with shape:
        `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)`

    Example:

    ```python
    depth = 30
    height = 30
    width = 30
    channels = 3

    inputs = keras.layers.Input(shape=(depth, height, width, channels))
    layer = keras.layers.AveragePooling3D(pool_size=3)
    outputs = layer(inputs)  # Shape: (batch_size, 10, 10, 10, 3)
    ```
    c           	      4    t        |   ||fdd|||d| y )N   average)pool_dimensions	pool_modepaddingdata_formatname)super__init__)self	pool_sizestridesr   r   r   kwargs	__class__s          Z/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/layers/pooling/average_pooling3d.pyr   zAveragePooling3D.__init__C   s8     			
 #		
 		
    )NvalidNN)__name__
__module____qualname____doc__r   __classcell__)r   s   @r   r   r      s!    :~ 
 
r   r   N)keras.src.api_exportr   %keras.src.layers.pooling.base_poolingr   r    r   r   <module>r!      s6    - = .0HIJO
{ O
 KO
r   