
    2Vh                      L    d dl mZ d dlmZ  eddg       G d de             Zy)    )keras_export)BasePoolingzkeras.layers.MaxPooling2Dzkeras.layers.MaxPool2Dc                   .     e Zd ZdZ	 	 	 	 	 d fd	Z xZS )MaxPooling2Da  Max pooling operation for 2D spatial data.

    Downsamples the input along its spatial dimensions (height and width)
    by taking the maximum value over an input window
    (of size defined by `pool_size`) for each channel of the input.
    The window is shifted by `strides` along each dimension.

    The resulting output when using the `"valid"` padding option has a spatial
    shape (number of rows or columns) of:
    `output_shape = math.floor((input_shape - pool_size) / strides) + 1`
    (when `input_shape >= pool_size`)

    The resulting output shape when using the `"same"` padding option is:
    `output_shape = math.floor((input_shape - 1) / strides) + 1`

    Args:
        pool_size: int or tuple of 2 integers, factors by which to downscale
            (dim1, dim2). If only one integer is specified, the same
            window length will be used for all dimensions.
        strides: int or tuple of 2 integers, or None. Strides values. If None,
            it will default to `pool_size`. If only one int is specified, the
            same stride size will be used for all dimensions.
        padding: string, either `"valid"` or `"same"` (case-insensitive).
            `"valid"` means no padding. `"same"` results in padding evenly to
            the left/right or up/down of the input such that output has the same
            height/width dimension as the input.
        data_format: string, either `"channels_last"` or `"channels_first"`.
            The ordering of the dimensions in the inputs. `"channels_last"`
            corresponds to inputs with shape `(batch, height, width, channels)`
            while `"channels_first"` corresponds to inputs with shape
            `(batch, channels, height, width)`. It defaults to the
            `image_data_format` value found in your Keras config file at
            `~/.keras/keras.json`. If you never set it, then it will be
            `"channels_last"`.

    Input shape:

    - If `data_format="channels_last"`:
        4D tensor with shape `(batch_size, height, width, channels)`.
    - If `data_format="channels_first"`:
        4D tensor with shape `(batch_size, channels, height, width)`.

    Output shape:

    - If `data_format="channels_last"`:
        4D tensor with shape
        `(batch_size, pooled_height, pooled_width, channels)`.
    - If `data_format="channels_first"`:
        4D tensor with shape
        `(batch_size, channels, pooled_height, pooled_width)`.

    Examples:

    `strides=(1, 1)` and `padding="valid"`:

    >>> x = np.array([[1., 2., 3.],
    ...               [4., 5., 6.],
    ...               [7., 8., 9.]])
    >>> x = np.reshape(x, [1, 3, 3, 1])
    >>> max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
    ...    strides=(1, 1), padding="valid")
    >>> max_pool_2d(x)

    `strides=(2, 2)` and `padding="valid"`:

    >>> x = np.array([[1., 2., 3., 4.],
    ...               [5., 6., 7., 8.],
    ...               [9., 10., 11., 12.]])
    >>> x = np.reshape(x, [1, 3, 4, 1])
    >>> max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
    ...    strides=(2, 2), padding="valid")
    >>> max_pool_2d(x)

    `stride=(1, 1)` and `padding="same"`:

    >>> x = np.array([[1., 2., 3.],
    ...               [4., 5., 6.],
    ...               [7., 8., 9.]])
    >>> x = np.reshape(x, [1, 3, 3, 1])
    >>> max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
    ...    strides=(1, 1), padding="same")
    >>> max_pool_2d(x)
    c           	      4    t        |   ||fdd|||d| y )N   max)pool_dimensions	pool_modepaddingdata_formatname)super__init__)self	pool_sizestridesr   r   r   kwargs	__class__s          V/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/layers/pooling/max_pooling2d.pyr   zMaxPooling2D.__init__[   s8     			
 #		
 		
    ))r   r   NvalidNN)__name__
__module____qualname____doc__r   __classcell__)r   s   @r   r   r      s%    Rl 
 
r   r   N)keras.src.api_exportr   %keras.src.layers.pooling.base_poolingr   r    r   r   <module>r!      s6    - = *,DEFg
; g
 Gg
r   