
    2Vh
;                         d dl Zd dlmZ d dlmZ d dlmZ d dlm	Z
 dZ ed      	 	 	 	 	 	 	 	 	 	 	 	 	 dd       Zd	 Z	 	 	 dd
Z	 	 	 ddZ	 ddZ	 	 	 ddZy)    N)keras_export)dataset_utils)
tensorflow)tensorflow_io)z.wavz(keras.utils.audio_dataset_from_directoryc                 R   |dvr7t        |t        t        f      st        d|       |rt        d| d|       |dvrt        d|       |r|t        d      |Lt        |t              st        d	|       |d
k  rt        d|       t
        j                  st        d      ||d}d}t        j                  |
|||	       |	t        j                  j                  d      }	||dz  }nd}t        j                  | |t        |||	||      \  }}}|dk(  rt        |      dk7  rt        d|       |dk(  r>t!        |||
| ||||||||	      \  }}t#        |||||      }t#        |||||      }||fS t%        ||| |
|||||||||	      }t#        |||||      }|S )a  Generates a `tf.data.Dataset` from audio files in a directory.

    If your directory structure is:

    ```
    main_directory/
    ...class_a/
    ......a_audio_1.wav
    ......a_audio_2.wav
    ...class_b/
    ......b_audio_1.wav
    ......b_audio_2.wav
    ```

    Then calling `audio_dataset_from_directory(main_directory,
    labels='inferred')`
    will return a `tf.data.Dataset` that yields batches of audio files from
    the subdirectories `class_a` and `class_b`, together with labels
    0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`).

    Only `.wav` files are supported at this time.

    Args:
        directory: Directory where the data is located.
            If `labels` is `"inferred"`, it should contain subdirectories,
            each containing audio files for a class. Otherwise, the directory
            structure is ignored.
        labels: Either "inferred" (labels are generated from the directory
            structure), `None` (no labels), or a list/tuple of integer labels
            of the same size as the number of audio files found in
            the directory. Labels should be sorted according to the
            alphanumeric order of the audio file paths
            (obtained via `os.walk(directory)` in Python).
        label_mode: String describing the encoding of `labels`. Options are:
            - `"int"`: means that the labels are encoded as integers (e.g. for
              `sparse_categorical_crossentropy` loss).
            - `"categorical"` means that the labels are encoded as a categorical
              vector (e.g. for `categorical_crossentropy` loss)
            - `"binary"` means that the labels (there can be only 2)
              are encoded as `float32` scalars with values 0
              or 1 (e.g. for `binary_crossentropy`).
            - `None` (no labels).
        class_names: Only valid if "labels" is `"inferred"`.
            This is the explicit list of class names
            (must match names of subdirectories). Used to control the order
            of the classes (otherwise alphanumerical order is used).
        batch_size: Size of the batches of data. Default: 32. If `None`,
            the data will not be batched
            (the dataset will yield individual samples).
        sampling_rate: Audio sampling rate (in samples per second).
        output_sequence_length: Maximum length of an audio sequence. Audio files
            longer than this will be truncated to `output_sequence_length`.
            If set to `None`, then all sequences in the same batch will
            be padded to the
            length of the longest sequence in the batch.
        ragged: Whether to return a Ragged dataset (where each sequence has its
            own length). Defaults to `False`.
        shuffle: Whether to shuffle the data.
            If set to `False`, sorts the data in alphanumeric order.
            Defaults to `True`.
        seed: Optional random seed for shuffling and transformations.
        validation_split: Optional float between 0 and 1, fraction of data to
            reserve for validation.
        subset: Subset of the data to return. One of `"training"`,
            `"validation"` or `"both"`. Only used if `validation_split` is set.
        follow_links: Whether to visits subdirectories pointed to by symlinks.
            Defaults to `False`.
        verbose: Whether to display number information on classes and
            number of files found. Defaults to `True`.

    Returns:

    A `tf.data.Dataset` object.

    - If `label_mode` is `None`, it yields `string` tensors of shape
      `(batch_size,)`, containing the contents of a batch of audio files.
    - Otherwise, it yields a tuple `(audio, labels)`, where `audio`
      has shape `(batch_size, sequence_length, num_channels)` and `labels`
      follows the format described
      below.

    Rules regarding labels format:

    - if `label_mode` is `int`, the labels are an `int32` tensor of shape
      `(batch_size,)`.
    - if `label_mode` is `binary`, the labels are a `float32` tensor of
      1s and 0s of shape `(batch_size, 1)`.
    - if `label_mode` is `categorical`, the labels are a `float32` tensor
      of shape `(batch_size, num_classes)`, representing a one-hot
      encoding of the class index.
    )inferredNaf  The `labels` argument should be a list/tuple of integer labels, of the same size as the number of audio files in the target directory. If you wish to infer the labels from the subdirectory names in the target directory, pass `labels="inferred"`. If you wish to get a dataset that only contains audio samples (no labels), pass `labels=None`. Received: labels=zIYou can only pass `class_names` if `labels="inferred"`. Received: labels=z, and class_names=>   Nintbinarycategoricalzc`label_mode` argument must be one of "int", "categorical", "binary", or None. Received: label_mode=Nz5Cannot set both `ragged` and `output_sequence_length`zF`sampling_rate` should have an integer value. Received: sampling_rate=r   zA`sampling_rate` should be higher than 0. Received: sampling_rate=zzTo use the argument `sampling_rate`, you should install tensorflow_io. You can install it via `pip install tensorflow-io`.g    .A      )formatsclass_namesshuffleseedfollow_linksverboser
      z_When passing `label_mode="binary"`, there must be exactly 2 class_names. Received: class_names=both)
file_pathslabelsvalidation_split	directory
label_moder   sampling_rateoutput_sequence_lengthraggedr   shuffle_buffer_sizer   dataset
batch_sizer   r   r   r   r   r   r   subsetr   r   r   r   r   r   r   r   )
isinstancelisttuple
ValueErrorr	   tfio	availableImportErrorr   check_validation_split_argnprandomrandintindex_directoryALLOWED_FORMATSlen#get_training_and_validation_datasetprepare_datasetget_dataset)r   r   r   r   r!   r   r   r   r   r   r   r#   r   r   r   r   train_datasetval_datasetr    s                      S/home/dcms/DCMS/lib/python3.12/site-packages/keras/src/utils/audio_dataset_utils.pyaudio_dataset_from_directoryr8      s   X ''&4-0E FLHN  99? A*m- 
 ??--7L:
 	
 (4C
 	
  --++8/; 
 A++8/; 
 ~~"  ~+
,,&'4 |yy  %(1n"&3&C&C!	'#J X#k"2a"722=@
 	

 %H!-!#'#9 3&
"{ (!!##9
 &!##9
 k)) !-!#'#9 3
 "!##9
     c                     | j                  t        j                  j                        } |-||s| j	                  |d d gg f      } n| j                  |      } || _        | S )N)padded_shapes)prefetchtfdataAUTOTUNEpadded_batchbatchr   r   s        r7   r3   r3     sn     rww//0G!)&**D$<*< + G mmJ/G &GNr9   c                 V   t        j                  | ||d      \  }}|st        d| dt               t        j                  | ||d      \  }}|st        d| dt               t	        ||||rt        |      nd||||	|
|
      }t	        ||||rt        |      nd|||d	      }||fS )
Ntrainingz+No training audio files found in directory . Allowed format(s): 
validationz-No validation audio files found in directory r   
r   r   r   num_classesr   r   r   r   r   r   F)r   r   r   rG   r   r   r   r   r    get_training_or_validation_splitr'   r0   paths_and_labels_to_datasetr1   )r   r   r   r   r   r   r   r   r   r   r   r   file_paths_trainlabels_trainfile_paths_val
labels_valr5   r6   s                     r7   r2   r2     s	   " 	66F,j	 9) E""1!24
 	

 "/!O!OF,l"NJ ;I; G""1!24
 	

 0#(3C$#5/M .!(3C$#5	K +%%r9   c                     t        j                  | |||      \  } }| st        d| dt               t	        | |||rt        |      nd|||	|
||
      S )Nz"No audio files found in directory rD   r   rF   rH   r"   s                r7   r4   r4   T  s     'GGF,fJ 0 <""1!24
 	

 '(3C$#5/ r9   c                 $   t         j                  j                  |       }|d}t         j                  j	                  ||      \  }}|Ft        j
                  |t         j                        }t        j                  j                  |||      }|S )zReads and decodes audio file.)contentsdesired_samples)inputrate_inrate_out)	r=   io	read_fileaudio
decode_wavcastint64r(   resample)pathr   r   rY   default_audio_rates        r7   read_and_decode_audior`   z  s     EEOOD!E%!# " 3 3(> !4 !E  WW%7B

##!3m $ 
 Lr9   c
                    t         j                  j                  j                  |       }
|rCt	        j
                  |||      }t         j                  j                  j                  |
|f      }n|
}|r|j                  |xs d|	      }|r_|j                  fdt         j                  j                        }|r,|j                  d t         j                  j                        }|S |j                  fdt         j                  j                        }|r,|j                  d t         j                  j                        }|S )z4Constructs a fixed-size dataset of audio and labels.r   )buffer_sizer   c                 "    t        |       |fS Nr`   )xyr   r   s     r7   <lambda>z-paths_and_labels_to_dataset.<locals>.<lambda>  s    %a8NO r9   )num_parallel_callsc                 D    t         j                  j                  |       |fS rd   r=   RaggedTensorfrom_tensor)rf   rg   s     r7   rh   z-paths_and_labels_to_dataset.<locals>.<lambda>  s    boo99!<a@ r9   c                     t        |       S rd   re   )rf   r   r   s    r7   rh   z-paths_and_labels_to_dataset.<locals>.<lambda>  s    +="8 r9   c                 @    t         j                  j                  |       S rd   rk   )rf   s    r7   rh   z-paths_and_labels_to_dataset.<locals>.<lambda>  s    "//55a8 r9   )
r=   r>   Datasetfrom_tensor_slicesr   labels_to_datasetzipr   mapr?   )r   r   r   rG   r   r   r   r   r   r   path_dslabel_dsdss       ``       r7   rJ   rJ     s'    ggoo00<G 22J
 WW__  '8!45ZZ$7$?4dZKVV  "ww//  
 @#%77#3#3  B& I VV  "ww//	  
 8#%77#3#3  B
 Ir9   )r   r	   N    NNFTNNNFT)FNN)NN)numpyr,   keras.src.api_exportr   keras.src.utilsr   keras.src.utils.module_utilsr   r=   r   r(   r0   r8   r3   r2   r4   r`   rJ    r9   r7   <module>r~      s     - ) 9 > 89 	r :rj> 	;&R 	#N 6:: 	6r9   