Ë
    …ÐVhÒ  ã                   ó”   — d Z ddl­ ddl­ ddl­ ddl­ ddl­ ddl­ ddl­ ddl­ ddl	­ ddl
­ ddl­ ddl­ ddl­ ddl­ y)a}  Approximations of graph properties and Heuristic methods for optimization.

The functions in this class are not imported into the top-level ``networkx``
namespace so the easiest way to use them is with::

    >>> from networkx.algorithms import approximation

Another option is to import the specific function with
``from networkx.algorithms.approximation import function_name``.

é    )Ú*N)Ú__doc__Ú8networkx.algorithms.approximation.clustering_coefficientÚ(networkx.algorithms.approximation.cliqueÚ.networkx.algorithms.approximation.connectivityÚ3networkx.algorithms.approximation.distance_measuresÚ0networkx.algorithms.approximation.dominating_setÚ-networkx.algorithms.approximation.kcomponentsÚ*networkx.algorithms.approximation.matchingÚ(networkx.algorithms.approximation.ramseyÚ-networkx.algorithms.approximation.steinertreeÚ4networkx.algorithms.approximation.traveling_salesmanÚ+networkx.algorithms.approximation.treewidthÚ.networkx.algorithms.approximation.vertex_coverÚ(networkx.algorithms.approximation.maxcutÚ)networkx.algorithms.approximation.density© ó    úZ/home/dcms/DCMS/lib/python3.12/site-packages/networkx/algorithms/approximation/__init__.pyú<module>r      s7   ðñ
ô GÜ 6Ü <Ü AÜ >Ü ;Ü 8Ü 6Ü ;Ü BÜ 9Ü <Ü 6Ý 7r   