
    oVhی              $       X9   d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZmZmZ d dlmZ d d	lmZ d d
lmZmZmZmZmZ d dlmZ d dlmZmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z'm(Z( d dl)m*Z*m+Z+m,Z,m-Z- d dl.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dl5m6Z6 d dl7m8Z8 d dl9m:Z:m;Z;m<Z<m=Z=m>Z> d dl9m?Z? d dlm@Z@mAZAmBZBmCZCmDZDmEZE d dlFmGZGmHZHmIZI d dlJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZT ddlUmVZVmWZWmXZXmYZYmZZZm[Z[m\Z\m]Z]m^Z^m_Z_m`Z`  ed      Zaeadu Zbd Zcd ZdefdZed  Zfd! Zgg d" ed#      fd$ ed$      fd% ed&      fd' ed'      fd( ed)      fd* ed)      fd+ ed,      fd- ed.      fd/ ed0      fd1 ed2      fd3 ed4      fd5 ed6      fd7 ed7      fd8 ed8      fd9 ed:      fd; ed<      fd= ed>      fd? ed@      fdA edB      fdC edD      fdE edE      fdF edF      fdG edG      fdH edH      fdI edJ      fdK edJ      fdL edM      fdN edO      fdP edQ      fdR edS      fdT edT      fdU edU      fdV edV      fdW edW      fdX edM      fdY edM      fdZ ed[      fd\ ed]      fd^ ed_      fd` eda      fdb edc      fdd ede      fdf edg      fdh edi      fdj edk      fdl edm      fdn edo      fdp edq      fdr eds      fdt edu      fdv edw      fdx edy      fdz ed{      fd| ed}      fd~ ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd ed      fd edë      fd edë      fd edƫ      fd edȫ      fd edʫ      fd edʫ      fd edͫ      fd edϫ      fd edѫ      fd edѫ      fd edԫ      fd ed֫      fZhdddd eYddܫ      fd eXdd      fd eXd d      fd eYdd      fd eYd d      fd0eKfddeKz  fd eX eYdeK      d      fdeP fdefdeNeOz  fd eYdd      fdeNeOz  fdeNeOz  fdeNeOz   fd eXeNeOz   eN       fd eY eXeKeL      eM      fd eX eY ed7      eO       eYeN ed                  fgZidddddddeKz  fddeKz  dz
  fdeP fdeNeOz  fddeNeOz  fdeNeOz  fdeNeOz   fdeOfdeKeLz   eMz  fgZjdeNeOz  fdeNeOz  fdeNeOz  fd eYd eZdd            fd eY eYd eZdd            eL      fd eY eYd eZdd            d      fd eYd eZdd            fd eYeNeOz    eZePd            fd  eYd eZdd            fg	ZkdeNeOz  fdeNeOz  fdeNeOz  fd edd      fdeLdz  fdd edd      fdeNeOz   ePz  fd  edd      fg	Zld e@eKeL      fd eAeKeL      fd eBeKeL      fd eDeKeL      fd eCeKeL      fd eEeKeL      fd	 eCeKeL      fd
 eEeKeL      fd eeKeL      fd eeKeL      fd eeKeL      fd eeKeL      fd eeKeL      fd e@eNdz  eOdz  z   ePdz        fgZmdeKdz  fd eZeK eYd eZdd                  fdeK eXdd      z  fd ed       e]eKeLz        z  fd eX eZdd        eYd eZdd                   fgZndeKdz  fd e+eK      fdeKdz  fd ed       e]eKeLz        z  fdgZod e6 eYdeK      eK      fd e6 eYdeK      eK      fd e6 eYdeK      eV      fd e6 eYdeKdz  eLz
        eK      fd e6 eYd eXeKeN            eK      fd e6 eYdd      eN      fd e6 eYdd      eKd df      fd e6 eYdeK      eKd df      fd e6 eYdeK      eKeNeOf      fd e6 eYdeK      eKeNeOf      fd e6 eYdeK      eKeNeOf      fd  e6 eYdeK      eKeNeOf      fd! e6 eYdeK      eKeNeOf      fd" e6 eYdeK      eKeNeOf      fd# e6 eWeM      eM eWeN       eWeO      f      fd$ e6 eYd eX eXeNeO      eP            eK      fd% e6 eYd eYd eeMd                  eM      fd& e6 eYd eYd eZeMd                  eM      fd' e6 eYd eYd eeKd                  eK      fd( e6 eYd eX eYd eZeNd             eYd eeOd                        eK      fd) e6 eYd eX eYd eZeKd            d            eK      fgZpd e6eKeK      fd e6eKeK      fd e6eKeV      fd e6eKdz  eLz
  eK      fd e6eKeNz   eK      fd e6deN      fd e6deKd df      fd e6eKeKd df      fd e6eKeKeNeOf      fd e6eKeKeNeOf      fd e6eKeKeNeOf      fd  e6eKeKeNeOf      fd! e6eKeKeNeOf      fd" e6eKeKeNeOf      fd# e6 eWeM      eM eWeN       eWeO      f      fd$ e6eNeOz   ePz   eK      fd% e6 eeMd      eM      fd& e6d eeMd      z  eM      fd' e6deKz  eK      fd( e6deNz  deOz  z   eK      fd* e6deNz  deOz  z
  eK      fd) e6deKz  dz   eK      fgZqd+ eeKeK      fd, eeKeR      fd- e e4eK      eK      fd. e eWeK      eK      fd/ e  ed0      eK      eK      fgZrd1 e3eV      fd2 e3eV      fd3 e/eN      fd4 eY e3eN       e0eO            fd5 e3 e0eV            fd6 e3 e0eV            fd7 e1eK       e2eL      z  fd8 eY e3eK       eZdd            fgZsd9 e8eNeKdd:;      fd< e8eNeKdd:;      fd= e8eNeKdd:;      fd> e8eNeKdd:;      fd? e8eNeKdd:;      fd@ e8eNeKddA;      fdB e8eNeKddC;      fdD e8eNeKddA;      fdE e8eNeKddC;      fdF e8 eYd eZeKd            eKe      fg
ZtdF e8deKz  eKe      fgZudG e+eK      fdH e+ eXeKeO            fdI eZ e3eK       eZdd            fdJ e* e3eK      eL      fdK e* e3eK      eV      fdL e[ eYdM eZdNd                  fgZvdG e+eK      fdH e+eKeOz         fdI e* e3eK      d      fdJ e* e3eK      eL      fdK e* e3eK      eV      fdL e+d      fgZwdO e^eK      fdP e^dQ      fdR e^eV      fdS e^ eXeKd            fdT e^ e^eK            fdU e^ e^ e^eK                  fdV eY e^d       e^d            fgZxdO eeK      fdP edQ      fdR eeV      fdS eeKdz         fdT e eeK            fdU e e eeK                  fdV ed       ed      z  fdW edX       edX      z  fgZydY e	 eYdeP      eSddf      fdZ e	 eYdeP      eSddf      fd[ e	 eYdeP      eSddf      fd\ e	 eYdeP      eSddf      fd] e	 eYdeSdz        eSdd^f      fd_ e	 eYd eYd eZ e^eT      d                  eTd ef      fgZzdY e	ePeSddf      fdZ e	ePeSddf      fd[ e	ePeSddf      fd\ e	ePeSddf      fd] e	eSdz  eSdd^f      fd_ e	d eeT      z  eTd ef      fgZ{d` eeKeNeOePf      fda eeKeNeOePf      fdb eeKeNeOePf      fdc eeKeNeOePf      fgZ|dd eWeK      fde eWeKeL      fdf eWeKeLeM      fdg  edh      eK      fdi  edj      eKeLz         fdk  ed)       ed#       ed$            fgZ}dl e]eK      fdm e] e!eK            fdn e]eK       e]eL      z  fdo e] e]eK       e]eL      z        fdp e(eK      fdq e'eK      fdr e_eK      fds e_eK      fdt eeeKd^      fdu eeeK      fdv eeeKeLz        fdw eeeK      fdx eeeKeLz        fdy eeeKd      fdz eeeKeN      fd{ eeeKd|      fd} eeeK eZeNd            fd~ eeeKd      fd eeeKeN      fd e\eM      fd e\ e\eM            fd e\ eXeKeL            fd e\eK       e\eL      z   fd eceNeO      fd eceNeOePeQz
  eKeLz        fd edeNeO      fd edeNeOePeQz
  eKeLz        fd eGd0      fd eHd0      fd eI eGd0       eHd            fgZ~dl e!eK      fdm e! e!eK            fdn e!eK       e!eL      z  fdo e! e!eK       e!eL      z        fdp e(eK      fdq e'eK      fdr e$eK      fds e$eK      fdt e%eKd^      fdu e%eK      fdv e%eKeLz        fdw e%eK      fdx e%eKeLz        fdy e%eKd      fdz e%eKeN      fd{ e%eKd|      fd} e%eK eZeNd            fd~ e%eKd      fd e%eKeN      fd e"eM      fd e" e"eM            fd e"eKeLz         fd e"eK       e"eL      z   fd e,eNeO      fd e,eNeOePeQz
  eKeLz        fd e-eNeO      fd e-eNeOePeQz
  eKeLz        fd eGd0      fd eHd0      fd eI eGd0       eHd            fgZd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fd eYeNeO      fgZd e`eTeS      fd e`eTeS      fd e`eTeS      fd e`eTd       fd eZeK e`eTeS            fgZd eeTeS      fd eeTeS      fd eeTeS      fd eeTd       fdeK eeTeS      z  fgZd eY eXeKeL      eM      fd eY eXeKeL      eM      fd eY eXeKeL      eM      fgZd eZe?d      fd e]e?      fd e\e?      fd eXe?e?      fd eXe?e?       fd eYe?e?      fd eYe? eZe?d            fd eY eXde?       eZ e] eXde?            d            fgZd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd e:eNeOgeKeLgg      fd ef e:eKeLgeNeOgg       e:eNeOgeKeLgg            fd egd e:eNeOgeKeLgg            fd ef e:eKeLgeNeOgg       egd e:eNeOgeKeLgg                  fd eg eg e:eNeOePgeKeLeMgeNeOePgg       e:eKeLeMgeNeOePgeNeOePgg             e:eNeOePgeKeLeMgeKeLeMgg            fd eg e:eNeOgeKeLgg       eZdd            fd eZ e:eNeOgeKeLgg      d      fd eZ e:eNeOgeKeLgg      d      fd e= e:eNeOgeKeLgg            fd e= e:eNeOgeKeLgg            fd e= e:eNeOgeKeLgg            fd e= e:ddgddgg            fd eg ef e:ddgddgg       e= e:ddgddgg                   e:dgd gg            fd eZ ef e:eNeOgeKeLgg       e:eKeLgeNeOgg            d      fd e= ef e:eNeOgeKeLgg       e:eKeLgeNeOgg                  fd e\ ef e:e?dgddgg       e:e?dgddgg                  fgZg d e:eNeOgeKeLgg      j                         fdddÑdđd eg e:eNeOgeKeLgg       eZ e:eNeOgeKeLgg      j                         d            fd eg e:eNeOgeKeLgg       eZ e:eNeOgeKeLgg      j                         d            fd eg e:eNeOgeKeLgg       eZ e:eNeOgeKeLgg      j                         d            fd e:e? de?z
  ge?dgg      fd e:e? e?gde?z
  dgg      fd e> e:e?de?z   ge? dgg            fd e:ddgddgg      fd e:de?z  dNgddgg      fd e:de?z  dNgddgg      fd e:de?z  dgdNdgg      fd e:de?z  dNgddgg      fd e:de?z  dNgddgg      fd e:de?z  dgdNdgg      fd e:de?z  dNgddgg      fd e= ef e:e?dgddgg       e:e?dgddgg                  fd e= ef e:e?dgddgg       e:e?dgddgg                  fd ef e:e?dgddgg       e:e?dgddgg            fd e= ef e:e?dgddgg       e:e?dgddgg                  fd e= ef e:e?dgddgg       e:e?dgddgg                  fd ef e:e?dgddgg       e:e?dgddgg            fd e= ef e:e?dgddgg       e:e?dgddgg                  fd e= ef e:e?dgddgg       e:e?dgddgg                  fd ef e:e?dgddgg       e:e?dgddgg            fd e= ef e:e?dgddgg       e:e?dgddgg                  fd ef e:e?dgddgg       e:e?dgddgg            j                         fd e> ef e:e?dgddgg       e:e?dgddgg                  fd e:dϐdgdde?z  gg      fd e= ef e:e?dgddgg       e:e?dgddgg                  fd e:de?z  dNgddgg      fZd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zd Zed        Zd Zed        Zd Zd Zd Zd Zy(      )XFAIL)parse_latex_lark)import_module)Product)Sum)
DerivativeFunction)EooRational)Powevaluate)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrtMinMax)asincoscscsecsintan)Integral)Limit)MatrixMatAddMatMul	TransposeTrace)I)EqNeLtLeGtGe)BraKetInnerProduct)
xyzabcdtkn   )thetaf_Add_Mul_Pow_Sqrt
_Conjugate_Abs
_factorial_exp	_binomiallarkNc                      t        | ddiS Nr   F)r    argss    S/home/dcms/DCMS/lib/python3.12/site-packages/sympy/parsing/tests/test_latex_lark.py_MinrU   $       %u%%    c                      t        | ddiS rQ   )r!   rR   s    rT   _MaxrY   (   rV   rW   c                 J    |t         k(  rt        | d      S t        | |d      S NFr   )r
   r   r<   r=   s     rT   _logr]   ,   s%    Av1u%%1a%((rW   c                     t        | |d      S r[   )r+   r\   s     rT   _MatAddr_   3       !Q''rW   c                     t        | |d      S r[   )r,   r\   s     rT   _MatMulrb   7   r`   rW   x_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zy''_1zy''_{1}zy_1''zy_{1}''z
\mathit{x}r9   z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldza'za''z\alpha'zalpha'z\alpha''zalpha''a_bza_{b}za_b'za_{b}'za'_bza'_{b}za'_b'za'_{b}'za_{b'}za_{b'}'za'_{b'}za'_{b'}'z\mathit{foo}'zfoo'z\mathit{foo'}z\mathit{foo'}'zfoo''za_b''za_{b}''za''_bza''_{b}za''_b'''z
a''_{b}'''za_{b''}z	a_{b''}''z	a''_{b''}za''_{b''}'''z\mathit{foo}''z\mathit{foo''}z\mathit{foo''}'''zfoo'''''za_\alphaz	a_{alpha}z	a_\alpha'z
a_{alpha}'z	a'_\alphaz
a'_{alpha}z
a'_\alpha'za'_{alpha}'za_{\alpha'}z
a_{alpha'}za_{\alpha'}'za_{alpha'}'za'_{\alpha'}za'_{alpha'}za'_{\alpha'}'za'_{alpha'}'z
a_\alpha''za_{alpha}''z
a''_\alphaza''_{alpha}za''_\alpha'''za''_{alpha}'''za_{\alpha''}za_{alpha''}za_{\alpha''}''za_{alpha''}''za''_{\alpha''}za''_{alpha''}za''_{\alpha''}'''za''_{alpha''}'''z\alpha_bz	alpha_{b}z	\alpha_b'z
alpha_{b}'z	\alpha'_bz
alpha'_{b}z
\alpha'_b'zalpha'_{b}'z\alpha_{b'}z
alpha_{b'}z\alpha_{b'}'zalpha_{b'}'z\alpha'_{b'}zalpha'_{b'}z\alpha'_{b'}'zalpha'_{b'}'z
\alpha_b''zalpha_{b}''z
\alpha''_bzalpha''_{b}z\alpha''_b'''zalpha''_{b}'''z\alpha_{b''}zalpha_{b''}z\alpha_{b''}''zalpha_{b''}''z\alpha''_{b''}zalpha''_{b''}z\alpha''_{b''}'''zalpha''_{b''}'''z\alpha_\betazalpha_{beta}z\alpha_{\beta}z\alpha_{\beta'}zalpha_{beta'}z\alpha_{\beta''}zalpha_{beta''}z\alpha'_\betazalpha'_{beta}z\alpha'_{\beta}z\alpha'_{\beta'}zalpha'_{beta'}z\alpha'_{\beta''}zalpha'_{beta''}z\alpha''_\betazalpha''_{beta}z\alpha''_{\beta}z\alpha''_{\beta'}zalpha''_{beta'}z\alpha''_{\beta''}zalpha''_{beta''}z\alpha_\beta'zalpha_{beta}'z\alpha_{\beta}'z\alpha_{\beta'}'zalpha_{beta'}'z\alpha_{\beta''}'zalpha_{beta''}'z\alpha'_\beta'zalpha'_{beta}'z\alpha'_{\beta}'z\alpha'_{\beta'}'zalpha'_{beta'}'z\alpha'_{\beta''}'zalpha'_{beta''}'z\alpha''_\beta'zalpha''_{beta}'z\alpha''_{\beta}'z\alpha''_{\beta'}'zalpha''_{beta'}'z\alpha''_{\beta''}'zalpha''_{beta''}'z\alpha_\beta''zalpha_{beta}''z\alpha_{\beta}''z\alpha_{\beta'}''zalpha_{beta'}''z\alpha_{\beta''}''zalpha_{beta''}''z\alpha'_\beta''zalpha'_{beta}''z\alpha'_{\beta}''z\alpha'_{\beta'}''zalpha'_{beta'}''z\alpha'_{\beta''}''zalpha'_{beta''}''z\alpha''_\beta''zalpha''_{beta}''z\alpha''_{\beta}''z\alpha''_{\beta'}''zalpha''_{beta'}''z\alpha''_{\beta''}''zalpha''_{beta''}'')0r   )1rC   )z-3.14gQ	(-7.13)(1.5)gQg      ?1+10+11*2   0*12xz3x - 1   z-cz\inftyz	a \cdot b1 \times 2 za / bza \div bza + bz	a + b - az	(x + y) zza'b+ab'zb')rj   gp=
c%)rk   rn   )rl   rC   )rm   rn   )ro   r   )rs   rn   z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12y	\frac1234"   z	\frac2{3}z\frac{a + b}{c}z\frac{7}{3}   )rt      zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yza^2 + b^2 = c^2zx^2zx^\frac{1}{2}z	x^{3 + 1}z
\pi^{|xy|}pi	5^0 - 4^0      )ry   r   z	\int x dxz\int x \, dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz\int \frac{1}{x} + 1 dxz!\int \frac{1}{a} - \frac{1}{b} dxz\frac{d}{dx} xz\frac{d}{dt} xz\frac{d}{dx} ( \tan x )z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}rD   z\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z(\csc x)(\sec y)z\frac{\sin{x}}2z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\lim_{x \to \infty} \frac{1}{x}z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!z24! \times 24!   z\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''zh_{\theta}(x_0, x_1)z|x|z||x||z|x||y|z||x||y||z\lfloor x \rfloorz\lceil x \rceilz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz\log_2 xz\log_a xz\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\min(a, b)z\min(a, b, c - d, xy)z
\max(a, b)z\max(a, b, c - d, xy)z\langle x |z| x \ranglez\langle x | y \rangler:   za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\imaginaryunit^2z|\imaginaryunit|z\overline{\imaginaryunit}z\imaginaryunit+\imaginaryunitz\imaginaryunit-\imaginaryunitz\imaginaryunit*\imaginaryunitz\imaginaryunit/\imaginaryunitz%(1+\imaginaryunit)/|1+\imaginaryunit|z)\begin{pmatrix}a & b \\x & y\end{pmatrix}z+\begin{pmatrix}a & b \\x & y\\\end{pmatrix}z)\begin{bmatrix}a & b \\x & y\end{bmatrix}z4\left(\begin{matrix}a & b \\x & y\end{matrix}\right)z4\left[\begin{matrix}a & b \\x & y\end{matrix}\right]z6\left[\begin{array}{cc}a & b \\x & y\end{array}\right]z6\left(\begin{array}{cc}a & b \\x & y\end{array}\right)z<\left( { \begin{array}{cc}a & b \\x & y\end{array} } \right)z*+\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}+\begin{pmatrix}a & b \\x & y\end{pmatrix}z*-\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}-\begin{pmatrix}a & b \\x & y\end{pmatrix}z\begin{pmatrix}a & b & c \\x & y & z \\a & b & c \end{pmatrix}*\begin{pmatrix}x & y & z \\a & b & c \\a & b & c \end{pmatrix}*\begin{pmatrix}a & b & c \\x & y & z \\x & y & z \end{pmatrix}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}/2z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^2z.\begin{pmatrix}a & b \\x & y\end{pmatrix}^{-1}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^Tz-\begin{pmatrix}a & b \\x & y\end{pmatrix}^{T}z4\begin{pmatrix}a & b \\x & y\end{pmatrix}^\mathit{T}z+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^Tzx(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T)*\begin{bmatrix}1\\0\end{bmatrix}zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^2zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^Tzn\overline{\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}}zJ\det\left(\left[   { \begin{array}{cc}a&b\\x&y\end{array} } \right]\right))z)\det \begin{pmatrix}1&2\\3&4\end{pmatrix})z*\det{\begin{pmatrix}1&2\\3&4\end{pmatrix}}r   )z*\det(\begin{pmatrix}1&2\\3&4\end{pmatrix})r   )z5\det\left(\begin{pmatrix}1&2\\3&4\end{pmatrix}\right)r   zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/\begin{vmatrix}a & b \\x & y\end{vmatrix}zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/|\begin{matrix}a & b \\x & y\end{matrix}|za\frac{\begin{pmatrix}a & b \\x & y\end{pmatrix}}{| { \begin{matrix}a & b \\x & y\end{matrix} } |}z^\overline{\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}}zU\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}^Hz[\trace(\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix})z4\adjugate(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix})r   zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\ast   zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast}zp(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast\ast}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{*}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{**}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{***}zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\primezn(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime}zz(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime\prime}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{''}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'''}zf(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'zg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})''zh(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'''zi\det(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zk\trace(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zn\adjugate(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})izg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Tzg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Hc                      ddh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY w)Nr   rv   F)	enumerateSYMBOL_EXPRESSION_PAIRSr   r   expected_failuresi	latex_str
sympy_exprs       rT   test_symbol_expressionsr     sw    A&/0G&H H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	H   AA	c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)N   F)r   #UNEVALUATED_SIMPLE_EXPRESSION_PAIRSr   r   !EVALUATED_SIMPLE_EXPRESSION_PAIRSr   s       rT   test_simple_expressionsr     s    &/0S&T H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00Q&R D""Iz!!	*j8C)C8D	H 	H   BB	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wNF)%UNEVALUATED_FRACTION_EXPRESSION_PAIRSr   r   #EVALUATED_FRACTION_EXPRESSION_PAIRSr   r   s     rT   test_fraction_expressionsr         !F H	:e_ 	H#I.*<GiG<	H 	HH "E D	:	*j8C)C8D	H 	H   AA&	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )RELATION_EXPRESSION_PAIRSr   r   r   s     rT   test_relation_expressionsr     sV    !: H	:e_ 	H#I.*<GiG<	H 	HH	H 	H	   :A	c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY wNrq   F)r   "UNEVALUATED_POWER_EXPRESSION_PAIRSr   r    EVALUATED_POWER_EXPRESSION_PAIRSr   s       rT   test_power_expressionsr     s    &/0R&S H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00P&Q D""Iz!!	*j8C)C8D	H 	Hr   c                     dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)N   F)r   %UNEVALUATED_INTEGRAL_EXPRESSION_PAIRSr   r   #EVALUATED_INTEGRAL_EXPRESSION_PAIRSr   s       rT   test_integral_expressionsr     s    &/0U&V @""Iz!!e_ 	@#I.*<?a?<	@ 	@@ '00S&T D""Iz!!	*j8C)C8D	@ 	@r   c                     ddh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 t        t              D ]"  \  }\  }}|| v rt        |      |k(  rJ |        y # 1 sw Y   xxY w)Nrq   r{   F)r   DERIVATIVE_EXPRESSION_PAIRSr   r   r   s       rT   test_derivative_expressionsr     s    A&/0K&L H""Iz!!e_ 	H#I.*<GiG<	H 	HH '00K&L D""Iz!!	*j8C)C8D	H 	Hs   BB	c                      dh} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY wr   )r   TRIGONOMETRIC_EXPRESSION_PAIRSr   r   r   s       rT   test_trigonometric_expressionsr     su    &/0N&O H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	Hs   AA	c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )"UNEVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   s     rT   test_limit_expressionsr     sV    !C H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )!UNEVALUATED_SQRT_EXPRESSION_PAIRSr   r   EVALUATED_SQRT_EXPRESSION_PAIRSr   s     rT   test_square_root_expressionsr     s    !B H	:e_ 	H#I.*<GiG<	H 	HH "A D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )&UNEVALUATED_FACTORIAL_EXPRESSION_PAIRSr   r   $EVALUATED_FACTORIAL_EXPRESSION_PAIRSr   s     rT   test_factorial_expressionsr     s    !G H	:e_ 	H#I.*<GiG<	H 	HH "F D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   ) UNEVALUATED_SUM_EXPRESSION_PAIRSr   r   EVALUATED_SUM_EXPRESSION_PAIRSr   s     rT   test_sum_expressionsr   #  s    !A H	:e_ 	H#I.*<GiG<	H 	HH "@ D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )$UNEVALUATED_PRODUCT_EXPRESSION_PAIRSr   r   r   s     rT   test_product_expressionsr   ,  sV    !E H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      h d} t        t              D ]7  \  }\  }}|| v rt        d      5  t        |      |k(  sJ |       	 d d d        9 y # 1 sw Y   DxY w)N>   r   rq   r{   F)r   !APPLIED_FUNCTION_EXPRESSION_PAIRSr   r   r   s       rT   !test_applied_function_expressionsr   1  ss    !&/0Q&R H""Iz!!e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   ),UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   r   *EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   s     rT    test_common_function_expressionsr   <  s    !M H	:e_ 	H#I.*<GiG<	H 	HH "L D	:	*j8C)C8D	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   ) SPACING_RELATED_EXPRESSION_PAIRSr   r   r   s     rT   test_spacingr   F  sV    !A H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )%UNEVALUATED_BINOMIAL_EXPRESSION_PAIRSr   r   #EVALUATED_BINOMIAL_EXPRESSION_PAIRSr   s     rT   test_binomial_expressionsr   M  r   r   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )MISCELLANEOUS_EXPRESSION_PAIRSr   r   r   s     rT   test_miscellaneous_expressionsr   V  sV    !? H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 y # 1 sw Y   <xY wr   )3UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRSr   r   r   s     rT   'test_literal_complex_number_expressionsr   \  sV    !T H	:e_ 	H#I.*<GiG<	H 	HH	H 	Hr   c                      t         D ]/  \  } }t        d      5  t        |       |k(  sJ |        	 d d d        1 t        D ]  \  } }t        |       |k(  rJ |         y # 1 sw Y   _xY wr   )#UNEVALUATED_MATRIX_EXPRESSION_PAIRSr   r   !EVALUATED_MATRIX_EXPRESSION_PAIRSr   s     rT   test_matrix_expressionsr   b  s    !D H	:e_ 	H#I.*<GiG<	H 	HH "C D	:	*j8C)C8D	H 	Hr   )sympy.testing.pytestr   sympy.parsing.latex.larkr   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.functionr   r	   sympy.core.numbersr
   r   r   sympy.core.powerr   sympy.core.parametersr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r   r    r!   (sympy.functions.elementary.trigonometricr"   r#   r$   r%   r&   r'   sympy.integrals.integralsr(   sympy.series.limitsr)   sympyr*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   sympy.physics.quantumr6   r7   r8   	sympy.abcr9   r:   r;   r<   r=   r>   r?   r@   rA   rB   
test_latexrD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   disabledrU   rY   r]   r_   rb   r   r   r   r   r   r   r   r   r   r   r   r   r    EVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   detr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    rW   rT   <module>r      s+   & 5 ( + ) 4 . .   * f f $ H ? ; > I I R R . % : :  8 8 8 8 2 2 2 h h h hV 4<&&  )((
iVG_ivgi VG_i vg	i
 &%&i F;'(i vi !i vi !i F3K i vf~&i vf~&i f]34i F4Li VE]i !"i  &#$!i" VG_#i$ fX%i& fX'i( vi !)i* x !+i, 	"#-i. 	"#/i0 &$%1i2 vf~&3i4 vf~&5i6 w(7i8 vi !9i: vi !;i< &&'=i> 	"#?i@ 6+&'AiB 6+&'CiD f^,-EiF w(GiH w(IiJ 6*-.KiL &%&MiN 6,'(OiP 6,'(QiR F=)*SiT VL)*UiV f]+,WiX f]+,YiZ vn-.[i\ F=)*]i^ F=)*_i` v./0aib f]+,cid /0eif /0gih 6"456iij &%&kil 6,'(min 6,'(oip F=)*qir VL)*sit f]+,uiv f]+,wix vn-.yiz F=)*{i| F=)*}i~ v./0i@ f]+,AiB /0CiD /0EiF 6"456GiH f^,-IiJ ~./KiL 01MiN &!123OiP vo./QiR 01SiT &!123UiV 6"345WiX /01YiZ &!123[i\ 6"345]i^ F#567_i` vo./aib 01cid &!123eif 6"345gih /01iij &!123kil 6"345min F#567oip  123qir 6"345sit F#567uiv V$789wix /01yiz &!123{i| 6"345}i~ F#567i@  123AiB 6"345CiD F#567EiF V$789GiH &!345IiJ F#567KiL V$789MiN f%9:;Oi X d5#&'T!QZT!QZT!QZT!QZ	1I
AENT!QZ$%
QBKO1q5T!QZ q1u!a%q1u4Ar?#4Q
A&'d6$<+T!VD\-BCD+' #2 
AENA	
QBK1q5q1u!a%q1u1AEQ;% !& QUa!ea!eaa%&$tAtAr{+Q/04QQ,b12442;'(a!eT!R[12T!T!R[)*
) % QUa!ea!e!Q !a%8Aq>"!a%1%Xa^$
' # r!Qx"Q(r!Qxr!Qx"Q("Q(AqAq~a#$(1a.! A&'+a#$*Q"#AqD1a4KA./ $ Q!VtAtAtAr{3451Q
?#F4LDQK/04Q
DT!QZ$89:& " Q!VtAw16F4LDQK/0$   8DAJ*+htAqz1-.aU34(416A:#6:;xQQ
 3Q78$q!*a()Xd1aj1a)45 (41:1ay"ABxQ
Q1I67xQ
Q1I67$q!*q!Qi89$q!*q!Qi898DAJAq	:;8DAJAq	:;"HQqTAqtQqT?$CD8DDaQ,?$@!DE8DDC2J,?$@!DEXd1d1d1bk.B&CQGHXd1d1c!Rj.A&BAFG)d1d442;/aQ1DEFJL$q$tAtAr{7KQ2O*PRS!TU-) %4 8Aq>"hq!n%E*+(16A:q12xAq)*!Q Xa!Q+, (1q!Qi"89xAq!9-.xAq!9-.!aAY/0!aAY/08A1ay128A1ay12"HQqTAqtQqT?$CD8AEAIq128C2J23Xa#a*na89Xa!eQ/0)8AEAEM1+EF)8AEAEM1+EF!a%!)Q!78-' #4 
1a()
1a()CFA!67:adA./z*;(7*;A*>BC  SZ c%j!T!WtCFCF+,#c%j/*3s5z?+#a&3q6/*c!fd1bk23	"  %1aT23 %1aT":; %1aT":;$eAq!&>?$eAq!&>?eAq!56eAq!56E!Qs34E!Qs34'tAtAr{/CQ)KL& " (q1ua)<=$  
 $q'd41:&'$s1vtAr{34 $s1vq/*tCFE23U4DBK#89:	% ! $q'd1q5k"$s1vq/*$s1vq/*tCFE23T!W%#  JqMjoE"#*T!QZ()z*Q-()jJqM234d:a=*Q-01* & IaLin5!")AE"#y1&'i	)A,/01ilYq\)*	"	"56	( $ CQ
Q1I67#d1aj1a)45CQ
Q1I67#d1aj1a)45s416?Q2J?@*aajmR01	2Q2J?A$   CAq!9-.#a!Q+,CAq!9-.#a!Q+,s16Aq":67*CIaL0@1a*,MN"  WQAq	2371q!Qi01WQAq	2371q!Qi01	( $ adO1aAaAJ#(#A&')hy)!a%01Xk6'?F7O<>% ! T!WtCF|Q$q'!"$tAwa()*58$$QatAr{tAwQUQa!eDAJDAJT!R[!d1d1aj)*$q!*$q!*jm$JqM!:;*T!QZ01#Z]Z]%BCDAJtAq!a%Q78DAJtAq!a%Q78SXSX|CHc#h?@? 0 ,F SVs3q6{AQ #c!fs1vo&'58$$AQs1bzs1vAE
AQUC1IC1ISBZ c!T!QZ()#a)#a)il#9Q<!89)AE*+#Yq\IaL%@AC1Is1aQA67C1Is1aQA67SXSX|CHc#h?@=. *D Q
Q
#Q
tAqz"Q
a$41:DAJQ
41:&$q!*%DAJ'$    i1o&yA'yA'i1o&Q	!Q01) % hq!n%x1~&x1~&hq!n%Xa^+,' # d41:q12T!QZ 34d1aj!!45"  $q!*%$q'"!:a=1%tAqz2%tAr{3%tAqz2%tAtAr{';<-tDAJT$qRS*EUWY@Z/[\	7 3 2aVaV3aVaV1aVaV<aVaV<aVaV>aVaV>aVaVDaVaV2aVaV3VaVaV$%v1v1v.>'?@B 3R!Q!Q()*,3VaVaV$%wr6Aq6Aq6:J3K'LMOH WVaAYAq	Aq!9=>aAYAq	Aq!9=>@aAYAq	Aq!95689 4VaVaV$%tAr{353	&1a&1a&!
"A&(6	&1a&1a&!
"B')3v1v1v&'(*5v1v1v&'(*<v1v1v&'(*3v1v1v&'(** WVaVaV,-v1v1v&678:aSz"$%6!Q!Q()!Q!Q()
+,-/06gfq!fq!f-.q!fq!f-.0 12 wAA/0AA/02 34{@' #DN%RaVaV!!#%N% 7N% 8	N%
 8N% CN% \VaVaV$%tFQFQF3C,D,H,H,JB'OPRN% \VaVaV$%tFQFQF3C,D,H,H,JB'OPRN% jVaVaV$%tFQFQF3C,D,H,H,JB'OPRN% gqb!A#YA "N% ^qb!WqsAh "N%" d
6Aqs8qb!W%&')#N%& =aWr1g!'N%* sbdAYA "+N%. ubdAYA "/N%2 yac1X1v!3N%6 }bdAYA "7N%: rbdAYA ";N%> sac1X1v!?N%B tbdAYA "CN%F uwv1v1v./1v1v./1 23GN%L wwv1v1v./1v1v./1 23MN%R }VaVaV$%aVaV$%'(SN%X Cwv1v1v./1v1v./1 23YN%^ rwv1v1v./1v1v./1 23_N%d sVaVaV$%aVaV$%'(eN%j twv1v1v./1v1v./1 23kN%p owv1v1v./1v1v./1 23qN%v pVaVaV$%aVaV$%'(wN%| qwv1v1v./1v1v./1 23}N%B rfq!fq!f%&q!fq!f%&(),0CN%H t
76Aq6Aq6*+Aq6Aq6*+- ./IN%N wq"gAaCy!"%ON%R pwv1v1v./1v1v./1 23SN%X pr!tQi!Q !$YN% !bHDDH
DDDHHDDDH
 H HD H HDHHDrW   