
    AVh.&              	       T   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm	Z	 dd	l
mZ dd
l
mZ ddlmZ  edg       ej                  dddej                   dddfd              Z eddg       ej$                  d      dddej                   fd              ZddZy)zbincount ops.    )dtypes)ops)tensor)tensor_conversion)	array_ops)gen_math_ops)math_ops)deprecation)dispatch)	tf_exportzmath.bincount)v1NFc                    |dn|}t        j                  |      5  t        j                  | d      } |t        j                  |d      }||rt	        d      | j
                  j                  s$t        j                  | t        j                        } |d}|dvrt	        d	| d
      t        j                  |       dkD  }t        j                  || j
                        t        j                  |       dz   z  }	|8t        j                  |d| j
                        }t        j                   ||	      }	|8t        j                  |d| j
                        }t        j"                  ||	      }	|dk(  r0|t        j$                  |dg      }t        j$                  | dg      } t'        | ||      }t        j(                  | |	||      cddd       S # 1 sw Y   yxY w)a  Counts the number of occurrences of each value in an integer array.

  If `minlength` and `maxlength` are not given, returns a vector with length
  `tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.

  >>> values = tf.constant([1,1,2,3,2,4,4,5])
  >>> tf.math.bincount(values)
  <tf.Tensor: ... numpy=array([0, 2, 2, 1, 2, 1], dtype=int32)>

  Vector length = Maximum element in vector `values` is 5. Adding 1, which is 6
                  will be the vector length.

  Each bin value in the output indicates number of occurrences of the particular
  index. Here, index 1 in output has a value 2. This indicates value 1 occurs
  two times in `values`.

  **Bin-counting with weights**

  >>> values = tf.constant([1,1,2,3,2,4,4,5])
  >>> weights = tf.constant([1,5,0,1,0,5,4,5])
  >>> tf.math.bincount(values, weights=weights)
  <tf.Tensor: ... numpy=array([0, 6, 0, 1, 9, 5], dtype=int32)>

  When `weights` is specified, bins will be incremented by the corresponding
  weight instead of 1. Here, index 1 in output has a value 6. This is the
  summation of `weights` corresponding to the value in `values` (i.e. for index
  1, the first two values are 1 so the first two weights, 1 and 5, are
  summed).

  There is an equivilance between bin-counting with weights and
  `unsorted_segement_sum` where `data` is the weights and `segment_ids` are the
  values.

  >>> values = tf.constant([1,1,2,3,2,4,4,5])
  >>> weights = tf.constant([1,5,0,1,0,5,4,5])
  >>> tf.math.unsorted_segment_sum(weights, values, num_segments=6).numpy()
  array([0, 6, 0, 1, 9, 5], dtype=int32)

  On GPU, `bincount` with weights is only supported when XLA is enabled
  (typically when a function decorated with `@tf.function(jit_compile=True)`).
  `unsorted_segment_sum` can be used as a workaround for the non-XLA case on
  GPU.

  **Bin-counting matrix rows independently**

  This example uses `axis=-1` with a 2 dimensional input and returns a
  `Tensor` with bincounting where axis 0 is **not** flattened, i.e. an
  independent bincount for each matrix row.

  >>> data = np.array([[1, 2, 3, 0], [0, 0, 1, 2]], dtype=np.int32)
  >>> tf.math.bincount(data, axis=-1)
  <tf.Tensor: shape=(2, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [2, 1, 1, 0]], dtype=int32)>

  **Bin-counting with binary_output**

  This example gives binary output instead of counting the occurrence.

  >>> data = np.array([[1, 2, 3, 0], [0, 0, 1, 2]], dtype=np.int32)
  >>> tf.math.bincount(data, axis=-1, binary_output=True)
  <tf.Tensor: shape=(2, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [1, 1, 1, 0]], dtype=int32)>

  **Missing zeros in SparseTensor**

  Note that missing zeros (implict zeros) in SparseTensor are **NOT** counted.
  This supports cases such as `0` in the values tensor indicates that index/id
  `0`is present and a missing zero indicates that no index/id is present.

  If counting missing zeros is desired, there are workarounds.
  For the `axis=0` case, the number of missing zeros can computed by subtracting
  the number of elements in the SparseTensor's `values` tensor from the
  number of elements in the dense shape, and this difference can be added to the
  first element of the output of `bincount`. For all cases, the SparseTensor
  can be converted to a dense Tensor with `tf.sparse.to_dense` before calling
  `tf.math.bincount`.

  Args:
    arr: A Tensor, RaggedTensor, or SparseTensor whose values should be counted.
      These tensors must have a rank of 2 if `axis=-1`.
    weights: If non-None, must be the same shape as arr. For each value in
      `arr`, the bin will be incremented by the corresponding weight instead of
      1. If non-None, `binary_output` must be False.
    minlength: If given, ensures the output has length at least `minlength`,
      padding with zeros at the end if necessary.
    maxlength: If given, skips values in `arr` that are equal or greater than
      `maxlength`, ensuring that the output has length at most `maxlength`.
    dtype: If `weights` is None, determines the type of the output bins.
    name: A name scope for the associated operations (optional).
    axis: The axis to slice over. Axes at and below `axis` will be flattened
      before bin counting. Currently, only `0`, and `-1` are supported. If None,
      all axes will be flattened (identical to passing `0`).
    binary_output: If True, this op will output 1 instead of the number of times
      a token appears (equivalent to one_hot + reduce_any instead of one_hot +
      reduce_add). Defaults to False.

  Returns:
    A vector with the same dtype as `weights` or the given `dtype` containing
    the bincount values.

  Raises:
    `InvalidArgumentError` if negative values are provided as an input.

  Nbincountarr)nameweightszXArguments `binary_output` and `weights` are mutually exclusive. Please specify only one.r   )r   z$Unsupported value for argument axis=z(. Only 0 and -1 are currently supported.   	minlength)r   dtype	maxlengthr   )inputsizer   binary_output)r   
name_scoper   "convert_to_tensor_v2_with_dispatch
ValueErrorr   
is_integerr	   castr   int32r   r   
reduce_maxconvert_to_tensorr   maximumminimumreshapevalidate_dense_weightsdense_bincount)
r   r   r   r   r   r   axisr   array_is_nonemptyoutput_sizes
             R/home/dcms/DCMS/lib/python3.12/site-packages/tensorflow/python/ops/bincount_ops.pyr   r      s   h |$
~~d )%

>
>s
OC!DD
	#g } = > > 99MM#v||,c|d7=dV D6 6 7 7 "s+a/-- 1399=C 1$&K''
+SYY8i ((K@k''
+SYY8i ((K@kqy		##GbT2cB4(c$S'59G&&#	%K)% )% )%s   F0GGr   c                      t        | ||||      S )a&  Counts the number of occurrences of each value in an integer array.

  If `minlength` and `maxlength` are not given, returns a vector with length
  `tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.
  If `weights` are non-None, then index `i` of the output stores the sum of the
  value in `weights` at each index where the corresponding value in `arr` is
  `i`.

  Args:
    arr: An int32 tensor of non-negative values.
    weights: If non-None, must be the same shape as arr. For each value in
      `arr`, the bin will be incremented by the corresponding weight instead of
      1.
    minlength: If given, ensures the output has length at least `minlength`,
      padding with zeros at the end if necessary.
    maxlength: If given, skips values in `arr` that are equal or greater than
      `maxlength`, ensuring that the output has length at most `maxlength`.
    dtype: If `weights` is None, determines the type of the output bins.

  Returns:
    A vector with the same dtype as `weights` or the given `dtype`. The bin
    values.
  )r   )r   r   r   r   r   s        r+   bincount_v1r-      s    < 
#w	9e	<<    c                     |:|rt        j                  g |      S t        j                  g | j                        S t        |t        j
                        s$t        d| dt        |      j                         |S )z;Validates the passed weight tensor or creates an empty one.)r   zTArgument `weights` must be a tf.Tensor if `values` is a tf.Tensor. Received weights=z
 of type: )	r   constantr   
isinstancer   Tensorr   type__name__)valuesr   r   s      r+   r&   r&      sy    _%00b55	GV]]	+
	#9JtG}/E/E.F	HI I 
.r.   )N)__doc__tensorflow.python.frameworkr   r   r   r   tensorflow.python.opsr   r   r	   tensorflow.python.utilr
   r    tensorflow.python.util.tf_exportr   add_dispatch_supportr    r   deprecated_endpointsr-   r&    r.   r+   <module>r>      s     . + . 9 + . * . + 6 ?r"	<< \%  #\%~ 
+,!!!*-ll	= . -=>r.   