
    AVh;                       d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZm Z m!Z! ddl"m#Z#  ed Z$dde#e!e$f   de#e!e$f   de%de%de#e!e$f   f
dZ&  ed       ejN                  e&            Z(de#e!e$f   de#e!e$f   de%de%de#e!e$f   f
dZ) eddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z*dde#e!e*f   de#e!e*f   de%de#e!e*f   fd.Z+  ed/       ejN                  e+            Z,de#e!e*f   de#e!e*f   de%de#e!e*f   fd0Z- ed1dddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z.dde#e!e.f   de#e!e.f   de%de#e!e.f   fd2Z/  ed3       ejN                  e/            Z0de#e!e.f   de#e!e.f   de%de#e!e.f   fd4Z1 ed5d"d#      Z2dde#e!e2f   d6e3de#e!e2f   fd7Z4  ed8       ejN                  e4            Z5de#e!e2f   d6e3de#e!e2f   fd9Z6 ed: Z7dde#e!e7f   d;e8de#e!e7f   fd<Z9  ed=       ejN                  e9            Z:de#e!e7f   d;e8de#e!e7f   fd>Z; ed? Z<dde#e!e<f   de#e!ejz                  f   fd@Z>  edA       ejN                  e>            Z?de#e!e<f   de#e!ejz                  f   fdBZ@ edCd"d#      ZAddDe#e!ej                  f   d6e3dEeAde#e!eAf   fdFZC  edG       ejN                  eC            ZDdDe#e!ej                  f   d6e3dEeAde#e!eAf   fdHZE edI ZF edJd"d#      ZGdde#e!ej                  f   dKe#e!eGf   dLe#e!eFf   de%dMe8f
dNZH  edO       ejN                  eH            ZIde#e!ej                  f   dKe#e!eGf   dLe#e!eFf   de%dMe8f
dPZJ edQ ZK edRd"d#      ZLdde#e!ej                  f   dKe#e!eLf   dLe#e!eKf   de%dMe8f
dSZM  edT       ejN                  eM            ZNde#e!ej                  f   dKe#e!eLf   dLe#e!eKf   de%dMe8f
dUZO edV ZP edWd"d#      ZQdde#e!ej                  f   dKe#e!eQf   dLe#e!ePf   de%dMe8f
dXZR  edY       ejN                  eR            ZSde#e!ej                  f   dKe#e!eQf   dLe#e!ePf   de%dMe8f
dZZT ed[ ZU ed\d"d#      ZVdde#e!ej                  f   dKe#e!eVf   dLe#e!eUf   de%dMe8f
d]ZW  ed^       ejN                  eW            ZXde#e!ej                  f   dKe#e!eVf   dLe#e!eUf   de%dMe8f
d_ZY ed` ZZ edad"d#      Z[dde#e!ej                  f   dKe#e!e[f   dLe#e!eZf   de%dMe8f
dbZ\  edc       ejN                  e\            Z]de#e!ej                  f   dKe#e!e[f   dLe#e!eZf   de%dMe8f
ddZ^ ededddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z_ edfd"d#      Z`dde#e!e_f   dKe#e!e`f   dLe#e!e_f   de%de#e!e_f   f
dgZa  edh       ejN                  ea            Zbde#e!e_f   dKe#e!e`f   dLe#e!e_f   de%de#e!e_f   f
diZc edjdddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Zd edkd"d#      Zedde#e!edf   dKe#e!eef   dLe#e!edf   de%de#e!edf   f
dlZf  edm       ejN                  ef            Zgde#e!edf   dKe#e!eef   dLe#e!edf   de%de#e!edf   f
dnZh edodddd d"d#      Zi edpd"d#      Zjdde#e!eif   dKe#e!ejf   dLe#e!eif   de%de#e!eif   f
dqZk  edr       ejN                  ek            Zlde#e!eif   dKe#e!ejf   dLe#e!eif   de%de#e!eif   f
dsZm edtdddd d"d#      Zn edud"d#      Zodde#e!enf   dKe#e!eof   dLe#e!enf   de%de#e!enf   f
dvZp  edw       ejN                  ep            Zqde#e!enf   dKe#e!eof   dLe#e!enf   de%de#e!enf   f
dxZr edydddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Zs edzd"d#      Ztdde#e!esf   dKe#e!etf   dLe#e!esf   de%de#e!esf   f
d{Zu  ed|       ejN                  eu            Zvde#e!esf   dKe#e!etf   dLe#e!esf   de%de#e!esf   f
d}Zw ed~dddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Zx edd"d#      Zydde#e!exf   dKe#e!eyf   dLe#e!exf   de%dMe8de#e!exf   fdZz  ed       ejN                  ez            Z{de#e!exf   dKe#e!eyf   dLe#e!exf   de%dMe8de#e!exf   fdZ| eddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z} edd"d#      Z~dde#e!e}f   dKe#e!e~f   dLe#e!e}f   de%dMe8de#e!e}f   fdZ  ed       ejN                  e            Zde#e!e}f   dKe#e!e~f   dLe#e!e}f   de%dMe8de#e!e}f   fdZ eddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z edd"d#      Zdde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ  ed       ejN                  e            Zde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ eddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z edd"d#      Zdde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ  ed       ejN                  e            Zde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ ed Z edd"d#      Zdde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ  ed       ejN                  e            Zde#e!ef   dKe#e!ef   dLe#e!ef   de%dMe8de#e!ef   fdZ eddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-      Z edd"d#      Zdde#e!ef   dKe#e!ef   dLe#e!ef   de%de#e!ef   f
dZ  ed       ejN                  e            Zde#e!ef   dKe#e!ef   dLe#e!ef   de%de#e!ef   f
dZ ed Z edd"d#      Zdde#e!ef   dKe#e!ef   dLe#e!ef   de%de#e!ef   f
dZ  ed       ejN                  e            Zde#e!ef   dKe#e!ef   dLe#e!ef   de%de#e!ef   f
dZ ed Zdded;e8de#e!ef   fdZ  ed       ejN                  e            Zded;e8de#e!ef   fdZ ed Zddede8de8de#e!ef   fdZ  ed       ejN                  e            Zdede8de8de#e!ef   fdZ ed Zddede8de8de#e!ef   fdZ  ed       ejN                  e            Zdede8de8de#e!ef   fdZy)zUPython wrappers around TensorFlow ops.

This file is MACHINE GENERATED! Do not edit.
    N)
pywrap_tfe)context)core)execute)dtypes)annotation_types)op_def_registry)ops)op_def_library)deprecated_endpoints)dispatch)	tf_export)TypeVarListAny)	Annotated) TV_Assign_T_atypes.BFloat16_atypes.Bool_atypes.Complex128_atypes.Complex64_atypes.Float16_atypes.Float32_atypes.Float64_atypes.Float8e4m3b11fnuz_atypes.Float8e4m3fn_atypes.Float8e4m3fnuz_atypes.Float8e5m2_atypes.Float8e5m2fnuz_atypes.Half_atypes.Int16_atypes.Int32_atypes.Int4_atypes.Int64_atypes.Int8_atypes.QInt16_atypes.QInt32_atypes.QInt8_atypes.QUInt16_atypes.QUInt8_atypes.Resource_atypes.String_atypes.UInt16_atypes.UInt32_atypes.UInt4_atypes.UInt64_atypes.UInt8_atypes.Variantrefvaluevalidate_shapeuse_lockingreturnc                 ,   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Update 'ref' by assigning 'value' to it.

  This operation outputs "ref" after the assignment is done.
  This makes it easier to chain operations that need to use the reset value.

  Args:
    ref: A mutable `Tensor`.
      Should be from a `Variable` node. May be uninitialized.
    value: A `Tensor`. Must have the same type as `ref`.
      The value to be assigned to the variable.
    validate_shape: An optional `bool`. Defaults to `True`.
      If true, the operation will validate that the shape
      of 'value' matches the shape of the Tensor being assigned to.  If false,
      'ref' will take on the shape of 'value'.
    use_locking: An optional `bool`. Defaults to `True`.
      If True, the assignment will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Fassign op does not support eager execution. Arg 'output_ref' is a ref.NTr5   r6   Assign)r3   r4   r5   r6   nameT_contextr   _thread_local_datais_eagerRuntimeError_execute	make_bool_op_def_library_apply_op_helpermust_record_gradient_get_attr_type_get_attr_boolinputsrecord_gradient)r3   r4   r5   r6   r;   _ctxtld__op_outputs_result_attrs_inputs_flats                S/home/dcms/DCMS/lib/python3.12/site-packages/tensorflow/python/ops/gen_state_ops.pyassignrT      s   . 
			0h..0$#\\
_
``N%%n6FG.K"";>+'88c~)6!QX QK'""$3%%c*,<  !12M  /1F ::L,1('	.    zraw_ops.Assignc                     t        d      )Nr9   rA   )r3   r4   r5   r6   r;   ctxs         rS   assign_eager_fallbackrY   N   s    ]^^rU   TV_AssignAdd_Tr   r   r   r   r   r    r!   r"   r$   r%   r&   r'   r(   r)   r*   r-   r.   r0   r1   c                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| |||      \  }}}}|dd }	t        j                         rHd|j                  d      d|j                  d      f}
|j                  }t        j                  d||
|	       |	\  }	|	S )av  Update 'ref' by adding 'value' to it.

  This operation outputs "ref" after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    value: A `Tensor`. Must have the same type as `ref`.
      The value to be added to the variable.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the addition will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Jassign_add op does not support eager execution. Arg 'output_ref' is a ref.NFr6   	AssignAddr3   r4   r6   r;   r<   r=   r3   r4   r6   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s               rS   
assign_addr`   S       & 
			0h..0$#\\
c
ddK"";>+'88E{O!QXQK'""$3%%c*M  /1F::L\674('	.rU   zraw_ops.AssignAddc                     t        d      )Nr\   rW   r3   r4   r6   r;   rX   s        rS   assign_add_eager_fallbackrd   }       abbrU   TV_AssignSub_Tc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| |||      \  }}}}|dd }	t        j                         rHd|j                  d      d|j                  d      f}
|j                  }t        j                  d||
|	       |	\  }	|	S )a  Update 'ref' by subtracting 'value' from it.

  This operation outputs "ref" after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    value: A `Tensor`. Must have the same type as `ref`.
      The value to be subtracted to the variable.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the subtraction will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Jassign_sub op does not support eager execution. Arg 'output_ref' is a ref.NFr6   	AssignSubr^   r<   r=   r_   s               rS   
assign_subrj      ra   rU   zraw_ops.AssignSubc                     t        d      )Nrh   rW   rc   s        rS   assign_sub_eager_fallbackrl      re   rU   TV_CountUpTo_Tlimitc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  |d      }t        j                  d| ||      \  }}}}|dd }t        j                         rHd|j                  d      d|j                  d      f}	|j                  }
t        j                  d|
|	|       |\  }|S )a  Increments 'ref' until it reaches 'limit'.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `int32`, `int64`.
      Should be from a scalar `Variable` node.
    limit: An `int`.
      If incrementing ref would bring it above limit, instead generates an
      'OutOfRange' error.
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `ref`.
  Dcount_up_to op does not support eager execution. Arg 'ref' is a ref.rn   	CountUpTo)r3   rn   r;   Nr<   )r>   r   r?   r@   rA   rB   make_intrD   rE   rF   _get_attr_intrG   rI   rJ   )r3   rn   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s              rS   count_up_tort      s     
			0h..0$#\\
]
^^


E7
+%'88E6!QXQK'""$s((13  %'F::L\674('	.rU   zraw_ops.CountUpToc                     t        d      )Nrp   rW   )r3   rn   r;   rX   s       rS   count_up_to_eager_fallbackrv          [\\rU   ) TV_DestroyTemporaryVariable_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   var_namec                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  |d      }t        j                  d| ||      \  }}}}|dd }t        j                         rHd|j                  d      d|j                  d      f}	|j                  }
t        j                  d|
|	|       |\  }|S )a  Destroys the temporary variable and returns its final value.

  Sets output to the value of the Tensor pointed to by 'ref', then destroys
  the temporary variable called 'var_name'.
  All other uses of 'ref' *must* have executed before this op.
  This is typically achieved by chaining the ref through each assign op, or by
  using control dependencies.

  Outputs the final value of the tensor pointed to by 'ref'.

  Args:
    ref: A mutable `Tensor`. A reference to the temporary variable tensor.
    var_name: A `string`.
      Name of the temporary variable, usually the name of the matching
      'TemporaryVariable' op.
    name: A name for the operation (optional).

  Returns:
    A `Tensor`. Has the same type as `ref`.
  Sdestroy_temporary_variable op does not support eager execution. Arg 'ref' is a ref.ry   DestroyTemporaryVariable)r3   ry   r;   Nr<   )r>   r   r?   r@   rA   rB   make_strrD   rE   rF   rG   get_attrrI   rJ   )r3   ry   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s              rS   destroy_temporary_variabler      s    * 
			0h..0$#\\
l
mmx4('88"hTK!QXQK'""$3%%c*Jll:&(F::L"L&'C('	.rU   z raw_ops.DestroyTemporaryVariablec                     t        d      )Nr{   rW   )r3   ry   r;   rX   s       rS   )destroy_temporary_variable_eager_fallbackr     s    jkkrU   ) TV_IsVariableInitialized_dtyper   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   c                 z   t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  d| |      \  }}}}|dd }t        j                         r7d|j                  d      f}|j                  }	t        j                  d|	||       |\  }|S )a<  Checks whether a tensor has been initialized.

  Outputs boolean scalar indicating whether the tensor has been initialized.

  Args:
    ref: A mutable `Tensor`.
      Should be from a `Variable` node. May be uninitialized.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `bool`.
  Pis_variable_initialized op does not support eager execution. Arg 'ref' is a ref.IsVariableInitialized)r3   r;   Ndtype)r>   r   r?   r@   rA   rD   rE   rB   rF   rG   rI   rJ   )
r3   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s
             rS   is_variable_initializedr     s     
			0h..0$#\\
i
jj'88St5!QXQK'""$s))'23F::Lvw@('	.rU   zraw_ops.IsVariableInitializedc                     t        d      )Nr   rW   )r3   r;   rX   s      rS   &is_variable_initialized_eager_fallbackr   (  s    ghhrU   TV_ResourceCountUpTo_Tresourcer<   c           
      
   t         j                   xs t        j                         }|j                  }|j                  r	 t	        j
                  |d|| d|d|      }|S t        j                  |d      }t        j                  |d      }t!        j"                  d| |||      \  }}}	}
|
dd }t        j$                         rHd|	j'                  d      d|	j)                  d      f}|	j*                  }t        j,                  d|||       |\  }|S # t        j                  $ r }t        j                  ||       Y d}~nd}~wt        j                  $ r Y nw xY w	 t        | ||||      S # t        j                  $ r Y #w xY w)a  Increments variable pointed to by 'resource' until it reaches 'limit'.

  Args:
    resource: A `Tensor` of type `resource`.
      Should be from a scalar `Variable` node.
    limit: An `int`.
      If incrementing ref would bring it above limit, instead generates an
      'OutOfRange' error.
    T: A `tf.DType` from: `tf.int32, tf.int64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `T`.
  ResourceCountUpTorn   r<   N)rn   r<   r;   rX   )r   rn   r<   r;   )r>   r   r?   r@   r   TFE_Py_FastPathExecute_core_NotOkStatusException_opsraise_from_not_ok_status_FallbackException#resource_count_up_to_eager_fallback_SymbolicExceptionrB   rr   	make_typerD   rE   rF   rs   rG   rI   rJ   )r   rn   r<   r;   rK   rL   rP   erM   rN   rO   rQ   rR   s                rS   resource_count_up_tor   -  s    
			0h..0$#\\11!47E3Kgn 

E7
+%C !'88heqtM!QXQK'""$s((13  %'F::L\67<('	.- && -
##At,,## 
0
%14T; ;## 
s0    D E#D>>EEE+ +FFzraw_ops.ResourceCountUpToc                 N   t        j                  |d      }t        j                  |d      }t        j                  | t
        j                        } | g}d|d|f}t        j                  dd||||      }t        j                         rt        j                  d|||       |\  }|S )Nrn   r<   s   ResourceCountUpTo   rI   attrsrX   r;   r   )
rB   rr   r   r   convert_to_tensor_dtypesr   r   rF   rJ   )r   rn   r<   r;   rX   rR   rQ   rP   s           rS   r   r   ^  s    


E7
+%C !##Hg.>.>?(,UC#&11\#)s?'""$\67<('	.rU   ) TV_ResourceScatterNdAdd_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2    TV_ResourceScatterNdAdd_Tindicesindicesupdatesbad_indices_policyc                 Z   t         j                   xs t        j                         }|j                  }|j                  r!	 t	        j
                  |d|| ||d|d|
      }|S |d}t        j                  |d      }|d}t        j                  |d      }t!        j"                  d| |||||      \  }
}
}}|S # t        j                  $ r }	t        j                  |	|       Y d}	~	nd}	~	wt        j                  $ r Y nw xY w	 t        | ||||||      S # t        j                  $ r Y w xY w)	a  Applies sparse addition to individual values or slices in a Variable.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  ```
  [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]
  ```

  For example, say we want to add 4 scattered elements to a rank-1 tensor to
  8 elements. In Python, that addition would look like this:

  ```python
  ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True)
  indices = tf.constant([[4], [3], [1], [7]])
  updates = tf.constant([9, 10, 11, 12])
  add = tf.scatter_nd_add(ref, indices, updates)
  with tf.Session() as sess:
    print sess.run(add)
  ```

  The resulting update to ref would look like this:

      [1, 13, 3, 14, 14, 6, 7, 20]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  Args:
    ref: A `Tensor` of type `resource`.
      A resource handle. Must be from a VarHandleOp.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of
      values to add to ref.
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    The created Operation.
  ResourceScatterNdAddr6   r   Nr6   r   r;   rX   T r3   r   r   r6   r   r;   )r>   r   r?   r@   r   r   r   r   r   r   r   &resource_scatter_nd_add_eager_fallbackr   rB   rC   r}   rD   rE   r3   r   r   r6   r   r;   rK   rL   rP   r   rM   rN   rO   s                rS   resource_scatter_nd_addr   p  R   n 
			0h..0$#\\11$dC'{$8:LNg n K"";>+(();=QR'88C',73E%)	+!QX
 
*- && -
##At,,## 
3
w[/dF F ## 
0    B7 7C>
C%%C>=C>D D*)D*zraw_ops.ResourceScatterNdAddc                    |d}t        j                  |d      }|d}t        j                  |d      }t        j                  |g|g       \  }\  }t        j                  |g|t        j
                  t        j                  g      \  }\  }t        j                  | t        j                        } | ||g}	d|d|d|d|f}
t        j                  dd|	|
||	      }d }|S )
NTr6   r   r   r<   Tindicess   ResourceScatterNdAddr   r   rB   rC   r}   args_to_matching_eagerr   int32int64r   r   r   r   r3   r   r   r6   r   r;   rX   _attr_T_attr_TindicesrR   rQ   rP   s               rS   r   r         K"";>+(();=QR 77	3K':G'>>y#PWP]P]_f_l_lOop.*7sG$4$45#w(,*nm#%79&4a#)s?''	.rU   ) TV_ResourceScatterNdMax_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2    TV_ResourceScatterNdMax_Tindicesc                 Z   t         j                   xs t        j                         }|j                  }|j                  r!	 t	        j
                  |d|| ||d|d|
      }|S |d}t        j                  |d      }|d}t        j                  |d      }t!        j"                  d| |||||      \  }
}
}}|S # t        j                  $ r }	t        j                  |	|       Y d}	~	nd}	~	wt        j                  $ r Y nw xY w	 t        | ||||||      S # t        j                  $ r Y w xY w)	a1  TODO: add doc.

  Args:
    ref: A `Tensor` of type `resource`.
      A resource handle. Must be from a VarHandleOp.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of
      values whose element wise max is taken with ref
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    The created Operation.
  ResourceScatterNdMaxr6   r   Nr   Tr   r   )r>   r   r?   r@   r   r   r   r   r   r   r   &resource_scatter_nd_max_eager_fallbackr   rB   rC   r}   rD   rE   r   s                rS   resource_scatter_nd_maxr     Q   * 
			0h..0$#\\11$dC'{$8:LNg n K"";>+(();=QR'88C',73E%)	+!QX
 
*- && -
##At,,## 
3
w[/dF F ## 
r   zraw_ops.ResourceScatterNdMaxc                    |d}t        j                  |d      }|d}t        j                  |d      }t        j                  |g|g       \  }\  }t        j                  |g|t        j
                  t        j                  g      \  }\  }t        j                  | t        j                        } | ||g}	d|d|d|d|f}
t        j                  dd|	|
||	      }d }|S )
NTr6   r   r   r<   r   s   ResourceScatterNdMaxr   r   r   r   s               rS   r   r     r   rU   ) TV_ResourceScatterNdMin_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2    TV_ResourceScatterNdMin_Tindicesc                 Z   t         j                   xs t        j                         }|j                  }|j                  r!	 t	        j
                  |d|| ||d|d|
      }|S |d}t        j                  |d      }|d}t        j                  |d      }t!        j"                  d| |||||      \  }
}
}}|S # t        j                  $ r }	t        j                  |	|       Y d}	~	nd}	~	wt        j                  $ r Y nw xY w	 t        | ||||||      S # t        j                  $ r Y w xY w)	a2  TODO: add doc.

  Args:
    ref: A `Tensor` of type `resource`.
      A resource handle. Must be from a VarHandleOp.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of
      values whose element wise min is taken with ref.
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    The created Operation.
  ResourceScatterNdMinr6   r   Nr   Tr   r   )r>   r   r?   r@   r   r   r   r   r   r   r   &resource_scatter_nd_min_eager_fallbackr   rB   rC   r}   rD   rE   r   s                rS   resource_scatter_nd_minr   ,  r   r   zraw_ops.ResourceScatterNdMinc                    |d}t        j                  |d      }|d}t        j                  |d      }t        j                  |g|g       \  }\  }t        j                  |g|t        j
                  t        j                  g      \  }\  }t        j                  | t        j                        } | ||g}	d|d|d|d|f}
t        j                  dd|	|
||	      }d }|S )
NTr6   r   r   r<   r   s   ResourceScatterNdMinr   r   r   r   s               rS   r   r   c  r   rU   ) TV_ResourceScatterNdSub_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2    TV_ResourceScatterNdSub_Tindicesc                 Z   t         j                   xs t        j                         }|j                  }|j                  r!	 t	        j
                  |d|| ||d|d|
      }|S |d}t        j                  |d      }|d}t        j                  |d      }t!        j"                  d| |||||      \  }
}
}}|S # t        j                  $ r }	t        j                  |	|       Y d}	~	nd}	~	wt        j                  $ r Y nw xY w	 t        | ||||||      S # t        j                  $ r Y w xY w)	a  Applies sparse subtraction to individual values or slices in a Variable.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  ```
  [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]
  ```

  For example, say we want to subtract 4 scattered elements from a rank-1 tensor
  with 8 elements. In Python, that subtraction would look like this:

  ```python
  ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8], use_resource=True)
  indices = tf.constant([[4], [3], [1], [7]])
  updates = tf.constant([9, 10, 11, 12])
  sub = tf.scatter_nd_sub(ref, indices, updates)
  with tf.Session() as sess:
    print sess.run(sub)
  ```

  The resulting update to ref would look like this:

      [1, -9, 3, -6, -4, 6, 7, -4]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  Args:
    ref: A `Tensor` of type `resource`.
      A resource handle. Must be from a VarHandleOp.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. A Tensor. Must have the same type as ref. A tensor of
      values to add to ref.
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    The created Operation.
  ResourceScatterNdSubr6   r   Nr   Tr   r   )r>   r   r?   r@   r   r   r   r   r   r   r   &resource_scatter_nd_sub_eager_fallbackr   rB   rC   r}   rD   rE   r   s                rS   resource_scatter_nd_subr   y  r   r   zraw_ops.ResourceScatterNdSubc                    |d}t        j                  |d      }|d}t        j                  |d      }t        j                  |g|g       \  }\  }t        j                  |g|t        j
                  t        j                  g      \  }\  }t        j                  | t        j                        } | ||g}	d|d|d|d|f}
t        j                  dd|	|
||	      }d }|S )
NTr6   r   r   r<   r   s   ResourceScatterNdSubr   r   r   r   s               rS   r   r     r   rU   ) TV_ResourceScatterNdUpdate_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   #TV_ResourceScatterNdUpdate_Tindicesc                 Z   t         j                   xs t        j                         }|j                  }|j                  r!	 t	        j
                  |d|| ||d|d|
      }|S |d}t        j                  |d      }|d}t        j                  |d      }t!        j"                  d| |||||      \  }
}
}}|S # t        j                  $ r }	t        j                  |	|       Y d}	~	nd}	~	wt        j                  $ r Y nw xY w	 t        | ||||||      S # t        j                  $ r Y w xY w)	a  Applies sparse `updates` to individual values or slices within a given

  variable according to `indices`.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  ```
  [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].
  ```

  For example, say we want to update 4 scattered elements to a rank-1 tensor to
  8 elements. In Python, that update would look like this:

  ```python
      ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
      indices = tf.constant([[4], [3], [1] ,[7]])
      updates = tf.constant([9, 10, 11, 12])
      update = tf.scatter_nd_update(ref, indices, updates)
      with tf.Session() as sess:
        print sess.run(update)
  ```

  The resulting update to ref would look like this:

      [1, 11, 3, 10, 9, 6, 7, 12]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  Args:
    ref: A `Tensor` of type `resource`.
      A resource handle. Must be from a VarHandleOp.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`.
      A Tensor. Must have the same type as ref. A tensor of updated
      values to add to ref.
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    The created Operation.
  ResourceScatterNdUpdater6   r   Nr   Tr   r   )r>   r   r?   r@   r   r   r   r   r   r   r   )resource_scatter_nd_update_eager_fallbackr   rB   rC   r}   rD   rE   r   s                rS   resource_scatter_nd_updater     sR   t 
			0h..0$#\\11'sGW{$8:LNg n K"";>+(();=QR'88!sGW/:6H(,	.!QX
 
*- && -
##At,,## 
6
w[/dF F ## 
r   zraw_ops.ResourceScatterNdUpdatec                    |d}t        j                  |d      }|d}t        j                  |d      }t        j                  |g|g       \  }\  }t        j                  |g|t        j
                  t        j                  g      \  }\  }t        j                  | t        j                        } | ||g}	d|d|d|d|f}
t        j                  dd|	|
||	      }d }|S )
NTr6   r   r   r<   r   s   ResourceScatterNdUpdater   r   r   r   s               rS   r   r   D  s    K"";>+(();=QR 77	3K':G'>>y#PWP]P]_f_l_lOop.*7sG$4$45#w(,*nm#%79&7$0C"&(' '	.rU   TV_ScatterAdd_TTV_ScatterAdd_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Adds sparse updates to a variable reference.

  This operation computes

      # Scalar indices
      ref[indices, ...] += updates[...]

      # Vector indices (for each i)
      ref[indices[i], ...] += updates[i, ...]

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their contributions add.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ScatterAdd.png" alt>
  </div>

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to add to `ref`.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the addition will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_add op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterAddr3   r   r   r6   r;   r<   r   r=   r3   r   r   r6   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s                rS   scatter_addr   [      R 
			0h..0$#\\
d
eeK"";>+'88#w"-D:!QX QK'""$3%%c*J  ,m  /1F ::LlFG5('	.rU   zraw_ops.ScatterAddc                     t        d      )Nr   rW   r3   r   r   r6   r;   rX   s         rS   scatter_add_eager_fallbackr         bccrU   TV_ScatterDiv_TTV_ScatterDiv_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Divides a variable reference by sparse updates.

  This operation computes

  ```python
      # Scalar indices
      ref[indices, ...] /= updates[...]

      # Vector indices (for each i)
      ref[indices[i], ...] /= updates[i, ...]

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...]
  ```

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their contributions divide.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of values that `ref` is divided by.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the operation will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_div op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterDivr   r<   r   r=   r   s                rS   scatter_divr         N 
			0h..0$#\\
d
eeK"";>+'88#w"-D:!QX QK'""$3%%c*J  ,m  /1F ::LlFG5('	.rU   zraw_ops.ScatterDivc                     t        d      )Nr   rW   r   s         rS   scatter_div_eager_fallbackr     r   rU   TV_ScatterMax_TTV_ScatterMax_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Reduces sparse updates into a variable reference using the `max` operation.

  This operation computes

      # Scalar indices
      ref[indices, ...] = max(ref[indices, ...], updates[...])

      # Vector indices (for each i)
      ref[indices[i], ...] = max(ref[indices[i], ...], updates[i, ...])

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] = max(ref[indices[i, ..., j], ...], updates[i, ..., j, ...])

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their contributions combine.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ScatterAdd.png" alt>
  </div>

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to reduce into `ref`.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the update will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_max op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterMaxr   r<   r   r=   r   s                rS   scatter_maxr     r   rU   zraw_ops.ScatterMaxc                     t        d      )Nr   rW   r   s         rS   scatter_max_eager_fallbackr   +  r   rU   TV_ScatterMin_TTV_ScatterMin_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Reduces sparse updates into a variable reference using the `min` operation.

  This operation computes

      # Scalar indices
      ref[indices, ...] = min(ref[indices, ...], updates[...])

      # Vector indices (for each i)
      ref[indices[i], ...] = min(ref[indices[i], ...], updates[i, ...])

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] = min(ref[indices[i, ..., j], ...], updates[i, ..., j, ...])

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their contributions combine.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ScatterAdd.png" alt>
  </div>

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`, `int64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to reduce into `ref`.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the update will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_min op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterMinr   r<   r   r=   r   s                rS   scatter_minr   1  r   rU   zraw_ops.ScatterMinc                     t        d      )Nr   rW   r   s         rS   scatter_min_eager_fallbackr   s  r   rU   TV_ScatterMul_TTV_ScatterMul_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a   Multiplies sparse updates into a variable reference.

  This operation computes

  ```python
      # Scalar indices
      ref[indices, ...] *= updates[...]

      # Vector indices (for each i)
      ref[indices[i], ...] *= updates[i, ...]

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]
  ```

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their contributions multiply.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to multiply to `ref`.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the operation will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_mul op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterMulr   r<   r   r=   r   s                rS   scatter_mulr   y  r   rU   zraw_ops.ScatterMulc                     t        d      )Nr   rW   r   s         rS   scatter_mul_eager_fallbackr    r   rU   TV_ScatterNdAdd_TTV_ScatterNdAdd_Tindicesc           
      P   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||||      \  }}}	}
|
dd }t        j                         rjd	|	j                  d	      d
|	j                  d
      d|	j                  d      d|	j                  d      f}|	j                  }t        j                  d|||       |\  }|S )a  Applies sparse addition to individual values or slices in a Variable.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  ```
  [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]
  ```

  For example, say we want to add 4 scattered elements to a rank-1 tensor to
  8 elements. In Python, that addition would look like this:

  ```python
  ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
  indices = tf.constant([[4], [3], [1], [7]])
  updates = tf.constant([9, 10, 11, 12])
  add = tf.scatter_nd_add(ref, indices, updates)
  with tf.Session() as sess:
    print sess.run(add)
  ```

  The resulting update to ref would look like this:

      [1, 13, 3, 14, 14, 6, 7, 20]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      A mutable Tensor. Should be from a Variable node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. Must have the same type as `ref`.
      A Tensor. Must have the same type as ref. A tensor of updated values
      to add to ref.
    use_locking: An optional `bool`. Defaults to `False`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Nscatter_nd_add op does not support eager execution. Arg 'output_ref' is a ref.NFr6   r   r   ScatterNdAddr   r<   r   r>   r   r?   r@   rA   rB   rC   r}   rD   rE   rF   rG   rH   r~   rI   rJ   r3   r   r   r6   r   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s                 rS   scatter_nd_addr
    s1   p 
			0h..0$#\\
g
hhK"";>+(();=QR'88C'$/+=DJ!QX QK'""$3%%c*J  ,m  /1Ell/02F ::Lfg7('	.rU   zraw_ops.ScatterNdAddc                     t        d      )Nr  rW   r3   r   r   r6   r   r;   rX   s          rS   scatter_nd_add_eager_fallbackr        effrU   TV_ScatterNdMax_TTV_ScatterNdMax_Tindicesc           
      P   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||||      \  }}}	}
|
dd }t        j                         rjd	|	j                  d	      d
|	j                  d
      d|	j                  d      d|	j                  d      f}|	j                  }t        j                  d|||       |\  }|S )aN  Computes element-wise maximum.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      A mutable Tensor. Should be from a Variable node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. Must have the same type as `ref`.
      A Tensor. Must have the same type as ref. A tensor of updated values
      to add to ref.
    use_locking: An optional `bool`. Defaults to `False`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Nscatter_nd_max op does not support eager execution. Arg 'output_ref' is a ref.NFr6   r   r   ScatterNdMaxr   r<   r   r  r	  s                 rS   scatter_nd_maxr    0   , 
			0h..0$#\\
g
hhK"";>+(();=QR'88C'$/+=DJ!QX QK'""$3%%c*J  ,m  /1Ell/02F ::Lfg7('	.rU   zraw_ops.ScatterNdMaxc                     t        d      )Nr  rW   r  s          rS   scatter_nd_max_eager_fallbackr  O  r  rU   TV_ScatterNdMin_TTV_ScatterNdMin_Tindicesc           
      P   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||||      \  }}}	}
|
dd }t        j                         rjd	|	j                  d	      d
|	j                  d
      d|	j                  d      d|	j                  d      f}|	j                  }t        j                  d|||       |\  }|S )aN  Computes element-wise minimum.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      A mutable Tensor. Should be from a Variable node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. Must have the same type as `ref`.
      A Tensor. Must have the same type as ref. A tensor of updated values
      to add to ref.
    use_locking: An optional `bool`. Defaults to `False`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Nscatter_nd_min op does not support eager execution. Arg 'output_ref' is a ref.NFr6   r   r   ScatterNdMinr   r<   r   r  r	  s                 rS   scatter_nd_minr  U  r  rU   zraw_ops.ScatterNdMinc                     t        d      )Nr  rW   r  s          rS   scatter_nd_min_eager_fallbackr    r  rU   TV_ScatterNdSub_TTV_ScatterNdSub_Tindicesc           
      P   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||||      \  }}}	}
|
dd }t        j                         rjd	|	j                  d	      d
|	j                  d
      d|	j                  d      d|	j                  d      f}|	j                  }t        j                  d|||       |\  }|S )a  Applies sparse subtraction to individual values or slices in a Variable.

  within a given variable according to `indices`.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape `[d_0, ..., d_{Q-2}, K]` where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  ```
  [d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]]
  ```

  For example, say we want to subtract 4 scattered elements from a rank-1 tensor
  with 8 elements. In Python, that subtraction would look like this:

  ```python
  ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
  indices = tf.constant([[4], [3], [1], [7]])
  updates = tf.constant([9, 10, 11, 12])
  sub = tf.scatter_nd_sub(ref, indices, updates)
  with tf.Session() as sess:
    print sess.run(sub)
  ```

  The resulting update to ref would look like this:

      [1, -9, 3, -6, -4, 6, 7, -4]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      A mutable Tensor. Should be from a Variable node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. Must have the same type as `ref`.
      A Tensor. Must have the same type as ref. A tensor of updated values
      to subtract from ref.
    use_locking: An optional `bool`. Defaults to `False`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Nscatter_nd_sub op does not support eager execution. Arg 'output_ref' is a ref.NFr6   r   r   ScatterNdSubr   r<   r   r  r	  s                 rS   scatter_nd_subr%    s1   t 
			0h..0$#\\
g
hhK"";>+(();=QR'88C'$/+=DJ!QX QK'""$3%%c*J  ,m  /1Ell/02F ::Lfg7('	.rU   zraw_ops.ScatterNdSubc                     t        d      )Nr#  rW   r  s          rS   scatter_nd_sub_eager_fallbackr'    r  rU   ) TV_ScatterNdUpdate_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   TV_ScatterNdUpdate_Tindicesc           
      P   t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||||      \  }}}	}
|
dd }t        j                         rjd	|	j                  d	      d
|	j                  d
      d|	j                  d      d|	j                  d      f}|	j                  }t        j                  d|||       |\  }|S )a6  Applies sparse `updates` to individual values or slices within a given

  variable according to `indices`.

  `ref` is a `Tensor` with rank `P` and `indices` is a `Tensor` of rank `Q`.

  `indices` must be integer tensor, containing indices into `ref`.
  It must be shape \\([d_0, ..., d_{Q-2}, K]\\) where `0 < K <= P`.

  The innermost dimension of `indices` (with length `K`) corresponds to
  indices into elements (if `K = P`) or slices (if `K < P`) along the `K`th
  dimension of `ref`.

  `updates` is `Tensor` of rank `Q-1+P-K` with shape:

  $$[d_0, ..., d_{Q-2}, ref.shape[K], ..., ref.shape[P-1]].$$

  For example, say we want to update 4 scattered elements to a rank-1 tensor to
  8 elements. In Python, that update would look like this:

  ```python
      ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
      indices = tf.constant([[4], [3], [1] ,[7]])
      updates = tf.constant([9, 10, 11, 12])
      update = tf.scatter_nd_update(ref, indices, updates)
      with tf.Session() as sess:
        print sess.run(update)
  ```

  The resulting update to ref would look like this:

      [1, 11, 3, 10, 9, 6, 7, 12]

  See `tf.scatter_nd` for more details about how to make updates to
  slices.

  See also `tf.scatter_update` and `tf.batch_scatter_update`.

  Args:
    ref: A mutable `Tensor`. A mutable Tensor. Should be from a Variable node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A Tensor. Must be one of the following types: int32, int64.
      A tensor of indices into ref.
    updates: A `Tensor`. Must have the same type as `ref`.
      A Tensor. Must have the same type as ref. A tensor of updated
      values to add to ref.
    use_locking: An optional `bool`. Defaults to `True`.
      An optional bool. Defaults to True. If True, the assignment will
      be protected by a lock; otherwise the behavior is undefined,
      but may exhibit less contention.
    bad_indices_policy: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Qscatter_nd_update op does not support eager execution. Arg 'output_ref' is a ref.NTr6   r   r   ScatterNdUpdater   r<   r   r  r	  s                 rS   scatter_nd_updater-    s1   r 
			0h..0$#\\
j
kkK"";>+(();=QR'88sGW'2.@tM!QX QK'""$3%%c*J  ,m  /1Ell/02F ::L<:('	.rU   zraw_ops.ScatterNdUpdatec                     t        d      )Nr+  rW   r  s          rS    scatter_nd_update_eager_fallbackr/  D  s    hiirU   TV_ScatterSub_TTV_ScatterSub_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	a  Subtracts sparse updates to a variable reference.

  ```python
      # Scalar indices
      ref[indices, ...] -= updates[...]

      # Vector indices (for each i)
      ref[indices[i], ...] -= updates[i, ...]

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]
  ```

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  Duplicate entries are handled correctly: if multiple `indices` reference
  the same location, their (negated) contributions add.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ScatterSub.png" alt>
  </div>

  Args:
    ref: A mutable `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`.
      Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to subtract from `ref`.
    use_locking: An optional `bool`. Defaults to `False`.
      If True, the subtraction will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Kscatter_sub op does not support eager execution. Arg 'output_ref' is a ref.NFr6   
ScatterSubr   r<   r   r=   r   s                rS   scatter_subr5  J  r   rU   zraw_ops.ScatterSubc                     t        d      )Nr3  rW   r   s         rS   scatter_sub_eager_fallbackr7    r   rU   ) TV_ScatterUpdate_Tr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   TV_ScatterUpdate_Tindicesc                    t         j                   xs t        j                         }|j                  }|j                  rt	        d      |d}t        j                  |d      }t        j                  d| ||||      \  }}}}	|	dd }
t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )	aM  Applies sparse updates to a variable reference.

  This operation computes

  ```python
      # Scalar indices
      ref[indices, ...] = updates[...]

      # Vector indices (for each i)
      ref[indices[i], ...] = updates[i, ...]

      # High rank indices (for each i, ..., j)
      ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]
  ```

  This operation outputs `ref` after the update is done.
  This makes it easier to chain operations that need to use the reset value.

  If values in `ref` is to be updated more than once, because there are
  duplicate entries in `indices`, the order at which the updates happen
  for each value is undefined.

  Requires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.

  <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ScatterUpdate.png" alt>
  </div>

  See also `tf.batch_scatter_update` and `tf.scatter_nd_update`.

  Args:
    ref: A mutable `Tensor`. Should be from a `Variable` node.
    indices: A `Tensor`. Must be one of the following types: `int32`, `int64`.
      A tensor of indices into the first dimension of `ref`.
    updates: A `Tensor`. Must have the same type as `ref`.
      A tensor of updated values to store in `ref`.
    use_locking: An optional `bool`. Defaults to `True`.
      If True, the assignment will be protected by a lock;
      otherwise the behavior is undefined, but may exhibit less contention.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor`. Has the same type as `ref`.
  Nscatter_update op does not support eager execution. Arg 'output_ref' is a ref.NTr6   ScatterUpdater   r<   r   r=   r   s                rS   scatter_updater=    s    Z 
			0h..0$#\\
g
hhK"";>+'88S'7%0t=!QX QK'""$3%%c*J  ,m  /1F ::Lvw8('	.rU   zraw_ops.ScatterUpdatec                     t        d      )Nr;  rW   r   s         rS   scatter_update_eager_fallbackr?    r  rU   ) TV_TemporaryVariable_dtyper   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r   c                 N   t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  | d      } t        j                  |d      }|d}t        j                  |d      }t        j                  d| |||      \  }}}}|dd }	t        j                         rYd|j                  d      d|j                  d      d|j                  d      f}
|j                  }t        j                  d||
|	       |	\  }	|	S )	a  Returns a tensor that may be mutated, but only persists within a single step.

  This is an experimental op for internal use only and it is possible to use this
  op in unsafe ways.  DO NOT USE unless you fully understand the risks.

  It is the caller's responsibility to ensure that 'ref' is eventually passed to a
  matching 'DestroyTemporaryVariable' op after all other uses have completed.

  Outputs a ref to the tensor state so it may be read or modified.

    E.g.
        var = state_ops._temporary_variable([1, 2], types.float_)
        var_name = var.op.name
        var = state_ops.assign(var, [[4.0, 5.0]])
        var = state_ops.assign_add(var, [[6.0, 7.0]])
        final = state_ops._destroy_temporary_variable(var, var_name=var_name)

  Args:
    shape: A `tf.TensorShape` or list of `ints`.
      The shape of the variable tensor.
    dtype: A `tf.DType`. The type of elements in the variable tensor.
    var_name: An optional `string`. Defaults to `""`.
      Overrides the name used for the temporary variable resource. Default
      value is the name of the 'TemporaryVariable' op (which is guaranteed unique).
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor` of type `dtype`.
  Ktemporary_variable op does not support eager execution. Arg 'ref' is a ref.shaper   Nr   ry   TemporaryVariable)rC  r   ry   r;   r>   r   r?   r@   rA   rB   
make_shaper   r}   rD   rE   rF   r~   rG   rI   rJ   )rC  r   ry   r;   rK   rL   rM   rN   rO   rP   rQ   rR   s               rS   temporary_variablerG    s   < 
			0h..0$#\\
d
ee


eW
-%


UG
,%Hx4('885"&(!QX QK'""$s||G,g  ):ll:&(F ::L\67<('	.rU   zraw_ops.TemporaryVariablec                     t        d      )NrB  rW   )rC  r   ry   r;   rX   s        rS   !temporary_variable_eager_fallbackrI    r   rU   ) TV_Variable_dtyper   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   	containershared_namec           
         t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  | d      } t        j                  |d      }|d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| ||||	      \  }}}}	|	dd }
t        j                         rjd|j                  d      d|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )
a@  Use VariableV2 instead.

  Args:
    shape: A `tf.TensorShape` or list of `ints`.
    dtype: A `tf.DType`.
    container: An optional `string`. Defaults to `""`.
    shared_name: An optional `string`. Defaults to `""`.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor` of type `dtype`.
  Avariable op does not support eager execution. Arg 'ref' is a ref.rC  r   Nr   rK  rL  VariablerC  r   rK  rL  r;   rE  rC  r   rK  rL  r;   rK   rL   rM   rN   rO   rP   rQ   rR   s                rS   variablerR    sF    
			0h..0$#\\
Z
[[


eW
-%


UG
,%I	;7)K!!+}=+'88%u	 +$8!QX QK'""$s||G,g  );ll;'ll=)+F ::LL&'3('	.rU   zraw_ops.Variablec                     t        d      )NrN  rW   rC  r   rK  rL  r;   rX   s         rS   variable_eager_fallbackrU  G  s    XYYrU   ) TV_VariableV2_dtyper   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   c           
         t         j                   xs t        j                         }|j                  }|j                  rt	        d      t        j                  | d      } t        j                  |d      }|d}t        j                  |d      }|d}t        j                  |d      }t        j                  d| ||||	      \  }}}}	|	dd }
t        j                         rjd|j                  d      d|j                  d      d|j                  d      d|j                  d      f}|j                  }t        j                  d|||
       |
\  }
|
S )
a_  Holds state in the form of a tensor that persists across steps.

  Outputs a ref to the tensor state so it may be read or modified.
  TODO(zhifengc/mrry): Adds a pointer to a more detail document
  about sharing states in tensorflow.

  Args:
    shape: A `tf.TensorShape` or list of `ints`.
      The shape of the variable tensor.
    dtype: A `tf.DType`. The type of elements in the variable tensor.
    container: An optional `string`. Defaults to `""`.
      If non-empty, this variable is placed in the given container.
      Otherwise, a default container is used.
    shared_name: An optional `string`. Defaults to `""`.
      If non-empty, this variable is named in the given bucket
      with this shared_name. Otherwise, the node name is used instead.
    name: A name for the operation (optional).

  Returns:
    A mutable `Tensor` of type `dtype`.
  Dvariable_v2 op does not support eager execution. Arg 'ref' is a ref.rC  r   Nr   rK  rL  
VariableV2rP  rE  rQ  s                rS   variable_v2rZ  L  sF   , 
			0h..0$#\\
]
^^


eW
-%


UG
,%I	;7)K!!+}=+'88E)"-D:!QX QK'""$s||G,g  );ll;'ll=)+F ::LlFG5('	.rU   zraw_ops.VariableV2c                     t        d      )NrX  rW   rT  s         rS   variable_v2_eager_fallbackr\    rw   rU   )TTN)FN)N)Tr   N)Fr   N)TN)r   N)r   r   N)__doc__collectionstensorflow.pythonr   tensorflow.python.eagerr   r>   r   r   r   rB   tensorflow.python.frameworkr   r   tensorflow.security.fuzzing.pyr   _atypesr	   _op_def_registryr
   r   r   rD   "tensorflow.python.util.deprecationr   tensorflow.python.utilr   	_dispatch tensorflow.python.util.tf_exportr   typingr   r   r   typing_extensionsr   r   boolrT   	to_raw_opr:   rY   rZ   r`   r]   rd   rf   rj   ri   rl   rm   intrt   rq   rv   rx   strr   r|   r   r   Boolr   r   r   r   Resourcer   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r
  r  r  r  r  r  r  r  r  r  r  r  r  r   r!  r%  r$  r'  r(  r)  r-  r,  r/  r0  r1  r5  r4  r7  r8  r9  r=  r<  r?  r@  rG  rD  rI  rJ  rR  rO  rU  rV  rZ  rY  r\   rU   rS   <module>rr     s"  
  6 7 1 7 9 F K 3 I C 8 6 % % '  z	.	#{*+ .Ic;>N4O .`d .w{ .  QZ  [^  `k  [k  Ql .` 
%#	$^T^^F%;	<_yk)9: _9SR]M]C^ _pt _  DH _  Xa  be  gr  br  Xs _ )+=?SUhj{  ~O  Q_  ap  rA  CR  Tb  dt  vF  HW  Yj  l|  ~N  P`  br  tC  D%Ic>12 %9S.EX;Y %gk %  BK  LO  Q_  L_  B` %N +I)*>4>>*+EF	c9S.-@#A c)TWYgTgJh cw{ c  LU  VY  [i  Vi  Lj c )+=?SUhj{  ~O  Q_  ap  rA  CR  Tb  dt  vF  HW  Yj  l|  ~N  P`  br  tC  D%Ic>12 %9S.EX;Y %gk %  BK  LO  Q_  L_  B` %N +I)*>4>>*+EF	c9S.-@#A c)TWYgTgJh cw{ c  LU  VY  [i  Vi  Lj c )?OLYsN23 C yY\^lYlOm @ +I)*>4>>++FG	]Ic>.A$B ]3 ]^ghkm{h{^| ] !(  !^
 %Ic3P.P$Q %]` %pyz}  @]  {]  q^ %N I9%GHXrIst l9SB_=_3` llo l  @I  JM  Ol  Jl  @m l ")  "`
 30N+N!O _hilnunznziz_{ : C	"AB>4>>RiCjk i	#?]:]0^ inwx{  ~E  ~J  ~J  yJ  oK i !!9?O\ ,9S'2B2B-B#C ,C ,Tj ,  {D  EH  J`  E`  {a ,\ ;I9:>4>>J^;_` )CAQAQ<Q2R [^ cy   JS  TW  Yo  To  Jp  $  V
 #*+M`o#p  U30@0@+@!A UIVY[{V{L| U  HQ  RU  Wp  Rp  Hq U  C U  ]` Ul Ay!?@PgAhi 	#w?O?O:O0P [deh  kK  fK  \L   W`  ad  f  a  W@   OS   il & $  V
 #*+M`o#p  330@0@+@!A 3IVY[{V{L| 3  HQ  RU  Wp  Rp  Hq 3  C 3  ]` 3h Ay!?@PgAhi 	#w?O?O:O0P [deh  kK  fK  \L   W`  ad  f  a  W@   OS   il & $  V
 #*+M`o#p  330@0@+@!A 3IVY[{V{L| 3  HQ  RU  Wp  Rp  Hq 3  C 3  ]` 3h Ay!?@PgAhi 	#w?O?O:O0P [deh  kK  fK  \L   W`  ad  f  a  W@   OS   il & $  V
 #*+M`o#p  U30@0@+@!A UIVY[{V{L| U  HQ  RU  Wp  Rp  Hq U  C U  ]` Ul Ay!?@PgAhi 	#w?O?O:O0P [deh  kK  fK  \L   W`  ad  f  a  W@   OS   il &  '   \
 &-.SUdfu&v #XIc73C3C.C$D XyY\  _B  ZB  PC X  NW  X[  ]y  Xy  Nz X  HL X  fi Xr G)$EF~t~~VpGqr 9S'BRBR=R3S ^ghk  nQ  iQ  _R   ]f  gj  lH  gH  ]I   X\   ru ( +-?AUWjl}  @Q  Sa  cr  tC  ET  Vd  fv  xH  JY  [l  n~  @P  Rb  dt  vE  F !9?O\ =YsO34 =yNdId?e =pyz}  @O  {O  qP =  ^b =  xA  BE  GV  BV  xW =~ -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d +-?AUWjl}  @Q  Sa  cr  tC  ET  Vd  fv  xH  JY  [l  n~  @P  Rb  dt  vE  F !9?O\ ;YsO34 ;yNdId?e ;pyz}  @O  {O  qP ;  ^b ;  xA  BE  GV  BV  xW ;z -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d +-?ARTegu  xG  IX  Y !9?O\ =YsO34 =yNdId?e =pyz}  @O  {O  qP =  ^b =  xA  BE  GV  BV  xW =~ -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d +-?ARTegu  xG  IX  Y !9?O\ =YsO34 =yNdId?e =pyz}  @O  {O  qP =  ^b =  xA  BE  GV  BV  xW =~ -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d +-?AUWjl}  @Q  Sa  cr  tC  ET  Vd  fv  xH  JY  [l  n~  @P  Rb  dt  vE  F !9?O\ ;YsO34 ;yNdId?e ;pyz}  @O  {O  qP ;  ^b ;  xA  BE  GV  BV  xW ;z -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d /1CEY[n  qB  DU  We  gv  xG  IX  Zh  jz  |L  N]  _p  rB  DT  Vf  hx  zI  J "#=P_` Q	#'8"89 QIcSkNkDl Q  xA  BE  GX  BX  xY Q  gk Q  FI Q  \e  fi  k|  f|  \} Qf 1y/01OPgy6G1G'H gS\]`bz]zS{ g  GP  QT  Vg  Qg  Gh g  w{ g  QT g  dm  nq  sD  nD  dE g /1CEY[n  qB  DU  We  gv  xG  IX  Zh  jz  |L  N]  _p  rB  DT  Vf  hx  zI  J "#=P_` /	#'8"89 /IcSkNkDl /  xA  BE  GX  BX  xY /  gk /  FI /  \e  fi  k|  f|  \} /b 1y/01OPgy6G1G'H gS\]`bz]zS{ g  GP  QT  Vg  Qg  Gh g  w{ g  QT g  dm  nq  sD  nD  dE g /1CEY[n  qB  DU  We  gv  xG  IX  Zh  jz  |L  N]  _p  rB  DT  Vf  hx  zI  J "#=P_` /	#'8"89 /IcSkNkDl /  xA  BE  GX  BX  xY /  gk /  FI /  \e  fi  k|  f|  \} /b 1y/01OPgy6G1G'H gS\]`bz]zS{ g  GP  QT  Vg  Qg  Gh g  w{ g  QT g  dm  nq  sD  nD  dE g /1CEY[n  qB  DU  We  gv  xG  IX  Zh  jz  |L  N]  _p  rB  DT  Vf  hx  zI  J "#=P_` S	#'8"89 SIcSkNkDl S  xA  BE  GX  BX  xY S  gk S  FI S  \e  fi  k|  f|  \} Sj 1y/01OPgy6G1G'H gS\]`bz]zS{ g  GP  QT  Vg  Qg  Gh g  w{ g  QT g  dm  nq  sD  nD  dE g   L
 %&C_Vef R9S*>%>? R)TWYtTtJu R  AJ  KN  Pd  Kd  Ae R  sw R  QT R  gp  qt  vJ  qJ  gK Rh 7)56~t~~FW7XYj)C9M4M*N jYbcf  iD  dD  ZE j  PY  Z]  _s  Zs  Pt j  CG j  ]` j  py  z}  S  zS  pT j +-?AUWjl}  @Q  Sa  cr  tC  ET  Vd  fv  xH  JY  [l  n~  @P  Rb  dt  vE  F !9?O\ =YsO34 =yNdId?e =pyz}  @O  {O  qP =  ^b =  xA  BE  GV  BV  xW =~ -Y+,^T^^K-HI
dIc?.B$C diX[]sXsNt d  @I  JM  O^  J^  @_ d  nr d  BK  LO  Q`  L`  Ba d   H
 #$?Rab A	#'9"9: AYsTmOmEn A  zC  DG  I[  D[  z\ A  jn A  CL  MP  Rd  Md  Ce AF 3	12>4>>.3QRgy6H1H'I gT]^ac|^|T} g  IR  SV  Xj  Sj  Ik g  z~ g  NW  X[  ]o  Xo  Np g %  X
 4%? 4# 4`ijm  pJ  kJ  aK 4l ;I9:>4>>J\;]^ d4N dZ] dmvwz  }W  xW  nX d   F
 ', ' 'C 'bklo  rC  mC  cD 'R )9'()ABZ*; Z ZZ] Zmvwz  }N  xN  nO Z   J
 01 0S 0QT 0gpqt  wJ  rJ  hK 0d -Y+,^T^^K-HI
]-@ ]S ]_b ]r{|  BU  }U  sV ]rU   