
    AVh                     $   d Z ddlmZ ddlmZ ddlmZ ddlmZ	 ddlm
Z ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ  edg d       G d de             Z  edg       G d de             Z!e Z"y)zImport router for file_io.    )copy)
create_dir)delete_file)delete_recursively)file_exists)FileIO)get_matching_files)is_directory)list_directory)recursive_create_dir)rename)stat)walk)
deprecated)	tf_exportio.gfile.GFile)zgfile.GFilez
gfile.Openr   )v1c                   $     e Zd ZdZd fd	Z xZS )GFilear	  File I/O wrappers without thread locking.

  The main roles of the `tf.io.gfile` module are:

  1. To provide an API that is close to Python's file I/O objects, and
  2. To provide an implementation based on TensorFlow's C++ FileSystem API.

  The C++ FileSystem API supports multiple file system implementations,
  including local files, Google Cloud Storage (using a `gs://` prefix, and
  HDFS (using an `hdfs://` prefix). TensorFlow exports these as `tf.io.gfile`,
  so that you can use these implementations for saving and loading checkpoints,
  writing to TensorBoard logs, and accessing training data (among other uses).
  However, if all your files are local, you can use the regular Python file
  API without any problem.

  *Note*: though similar to Python's I/O implementation, there are semantic
  differences to make `tf.io.gfile` more efficient for backing filesystems. For
  example, a write mode file will not be opened until the first write call to
  minimize RPC invocations in network filesystems.

  Once you obtain a `GFile` object, you can use it in most ways as you would any
  Python's file object:

  >>> with open("/tmp/x", "w") as f:
  ...   f.write("asdf")
  4
  >>> with tf.io.gfile.GFile("/tmp/x") as f:
  ...   f.read()
  'asdf'

  The difference is that you can specify URI schemes to use other filesystems
  (e.g., `gs://` for GCS, `s3://` for S3, etc.), if they are supported. Using
  `file://` as an example, we have:

  >>> with tf.io.gfile.GFile("file:///tmp/x", "w") as f:
  ...   f.write("qwert")
  ...   f.write("asdf")
  >>> tf.io.gfile.GFile("file:///tmp/x").read()
  'qwertasdf'

  You can also read all lines of a file directly:

  >>> with tf.io.gfile.GFile("file:///tmp/x", "w") as f:
  ...   f.write("asdf\n")
  ...   f.write("qwer\n")
  >>> tf.io.gfile.GFile("/tmp/x").readlines()
  ['asdf\n', 'qwer\n']

  You can iterate over the lines:

  >>> with tf.io.gfile.GFile("file:///tmp/x", "w") as f:
  ...   f.write("asdf\n")
  ...   f.write("qwer\n")
  >>> for line in tf.io.gfile.GFile("/tmp/x"):
  ...   print(line[:-1]) # removes the end of line character
  asdf
  qwer

  Random access read is possible if the underlying filesystem supports it:

  >>> with open("/tmp/x", "w") as f:
  ...   f.write("asdfqwer")
  >>> f = tf.io.gfile.GFile("/tmp/x")
  >>> f.read(3)
  'asd'
  >>> f.seek(4)
  >>> f.tell()
  4
  >>> f.read(3)
  'qwe'
  >>> f.tell()
  7
  >>> f.close()
  c                 0    t         t        |   ||       y N)namemode)superr   __init__selfr   r   	__class__s      P/home/dcms/DCMS/lib/python3.12/site-packages/tensorflow/python/platform/gfile.pyr   zGFile.__init__q   s    	%T5    r)__name__
__module____qualname____doc__r   __classcell__r   s   @r   r   r   $   s    IV6 6r    r   zgfile.FastGFilec                   <     e Zd ZdZ edd      d fd	       Z xZS )	FastGFilea\  File I/O wrappers without thread locking.

  Note, that this  is somewhat like builtin Python  file I/O, but
  there are  semantic differences to  make it more  efficient for
  some backing filesystems.  For example, a write  mode file will
  not  be opened  until the  first  write call  (to minimize  RPC
  invocations in network filesystems).
  NzUse tf.gfile.GFile.c                 0    t         t        |   ||       y r   )r   r*   r   r   s      r   r   zFastGFile.__init__   s    	)T#D#9r    r!   )r#   r$   r%   r&   r   r   r'   r(   s   @r   r*   r*   u   s$     d)*: +:r    r*   N)#r&    tensorflow.python.lib.io.file_ior   Copyr   MkDirr   Remover   DeleteRecursivelyr   Existsr   _FileIOr	   Globr
   IsDirectoryr   ListDirectoryr   MakeDirsr   Renamer   Statr   Walk"tensorflow.python.util.deprecationr    tensorflow.python.util.tf_exportr   r   r*   Open r    r   <module>r>      s     ! 9 @ B T B > G H L M = 9 9 9 6  OPM6G M6 QM6`  !": : #:" r    