
    VhQ                         d dl Z d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZ d	gZ G d
 d	e	      Zy)    N)Tensor)constraints)Exponential)euler_constant)TransformedDistribution)AffineTransformPowerTransform)broadcast_allWeibullc                        e Zd ZdZej
                  ej
                  dZej
                  Zd
 fd	Zd
 fd	Z	e
defd       Ze
defd       Ze
defd       Zd	 Z xZS )r   a  
    Samples from a two-parameter Weibull distribution.

    Example:

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample()  # sample from a Weibull distribution with scale=1, concentration=1
        tensor([ 0.4784])

    Args:
        scale (float or Tensor): Scale parameter of distribution (lambda).
        concentration (float or Tensor): Concentration parameter of distribution (k/shape).
    )scaleconcentrationc                 H   t        ||      \  | _        | _        | j                  j                         | _        t        t        j                  | j                        |      }t        | j                        t        d| j                        g}t        | -  |||       y )Nvalidate_argsexponentr   locr   )r
   r   r   
reciprocalconcentration_reciprocalr   torch	ones_liker	   r   super__init__)selfr   r   r   	base_dist
transforms	__class__s         K/home/dcms/DCMS/lib/python3.12/site-packages/torch/distributions/weibull.pyr   zWeibull.__init__%   s    )6um)L&
D&(,(:(:(E(E(G%OODJJ'}
	 D$A$AB4

 	JmL    c                    | j                  t        |      }| j                  j                  |      |_        | j                  j                  |      |_        |j                  j                         |_        | j                  j                  |      }t        |j                        t        d|j                        g}t        t        |/  ||d       | j                  |_        |S )Nr   r   r   Fr   )_get_checked_instancer   r   expandr   r   r   r   r	   r   r   r   _validate_args)r   batch_shape	_instancenewr   r   r   s         r    r$   zWeibull.expand1   s    (()<JJ%%k2	 ..55kB'*'8'8'C'C'E$NN))+6	C$@$@A3

 	gs$Y
%$P!00
r!   returnc                     | j                   t        j                  t        j                  d| j                  z               z  S N   )r   r   explgammar   r   s    r    meanzWeibull.mean?   s.    zzEIIell1t7T7T3T&UVVVr!   c                     | j                   | j                  dz
  | j                  z  | j                  j                         z  z  S r+   )r   r   r   r/   s    r    modezWeibull.modeC   sE     JJ""Q&$*<*<<!!,,.//	
r!   c           	         | j                   j                  d      t        j                  t        j                  dd| j
                  z  z               t        j                  dt        j                  d| j
                  z         z        z
  z  S )N   r,   )r   powr   r-   r.   r   r/   s    r    variancezWeibull.varianceK   sl    zz~~a IIell1q4+H+H'H#HIJiiELLT-J-J)JKKLM
 	
r!   c                     t         d| j                  z
  z  t        j                  | j                  | j                  z        z   dz   S r+   )r   r   r   logr   r/   s    r    entropyzWeibull.entropyR   sC    a$"?"??@ii

T%B%BBCD	
r!   )N)__name__
__module____qualname____doc__r   positivearg_constraintssupportr   r$   propertyr   r0   r2   r6   r9   __classcell__)r   s   @r    r   r      s      %%$--O ""G
M Wf W W 
f 
 
 
& 
 

r!   )r   r   torch.distributionsr   torch.distributions.exponentialr   torch.distributions.gumbelr   ,torch.distributions.transformed_distributionr   torch.distributions.transformsr   r	   torch.distributions.utilsr
   __all__r    r!   r    <module>rK      s5      + 7 5 P J 3 +H
% H
r!   